You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MangoHud/src/vulkan.cpp

2054 lines
82 KiB
C++

/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifdef _WIN32
#include <windows.h>
#endif
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <thread>
#include <chrono>
#include <unordered_map>
#include <mutex>
#include <vector>
#include <list>
#include <array>
#include <iomanip>
#include <spdlog/spdlog.h>
#include <vulkan/vulkan.h>
#include <vulkan/vk_layer.h>
#include "imgui.h"
#include "overlay.h"
// #include "util/debug.h"
#include <inttypes.h>
#include "mesa/util/macros.h"
#include "mesa/util/os_time.h"
#include "mesa/util/os_socket.h"
#include "vk_enum_to_str.h"
#include <vulkan/vk_util.h>
#include "notify.h"
#include "blacklist.h"
#include "pci_ids.h"
float offset_x, offset_y, hudSpacing;
int hudFirstRow, hudSecondRow;
VkPhysicalDeviceDriverProperties driverProps = {};
#if !defined(_WIN32)
namespace MangoHud { namespace GL {
extern swapchain_stats sw_stats;
}}
#endif
/* Mapped from VkInstace/VkPhysicalDevice */
struct instance_data {
struct vk_instance_dispatch_table vtable;
VkInstance instance;
struct overlay_params params;
uint32_t api_version;
string engineName, engineVersion;
enum EngineTypes engine;
notify_thread notifier;
};
/* Mapped from VkDevice */
struct queue_data;
struct device_data {
struct instance_data *instance;
PFN_vkSetDeviceLoaderData set_device_loader_data;
struct vk_device_dispatch_table vtable;
VkPhysicalDevice physical_device;
VkDevice device;
VkPhysicalDeviceProperties properties;
struct queue_data *graphic_queue;
std::vector<struct queue_data *> queues;
};
/* Mapped from VkCommandBuffer */
struct queue_data;
struct command_buffer_data {
struct device_data *device;
VkCommandBufferLevel level;
VkCommandBuffer cmd_buffer;
struct queue_data *queue_data;
};
/* Mapped from VkQueue */
struct queue_data {
struct device_data *device;
VkQueue queue;
VkQueueFlags flags;
uint32_t family_index;
};
struct overlay_draw {
VkCommandBuffer command_buffer;
VkSemaphore cross_engine_semaphore;
VkSemaphore semaphore;
VkFence fence;
VkBuffer vertex_buffer;
VkDeviceMemory vertex_buffer_mem;
VkDeviceSize vertex_buffer_size;
VkBuffer index_buffer;
VkDeviceMemory index_buffer_mem;
VkDeviceSize index_buffer_size;
};
/* Mapped from VkSwapchainKHR */
struct swapchain_data {
struct device_data *device;
VkSwapchainKHR swapchain;
unsigned width, height;
VkFormat format;
std::vector<VkImage> images;
std::vector<VkImageView> image_views;
std::vector<VkFramebuffer> framebuffers;
VkRenderPass render_pass;
VkDescriptorPool descriptor_pool;
VkDescriptorSetLayout descriptor_layout;
VkDescriptorSet descriptor_set;
VkSampler font_sampler;
VkPipelineLayout pipeline_layout;
VkPipeline pipeline;
VkCommandPool command_pool;
std::list<overlay_draw *> draws; /* List of struct overlay_draw */
bool font_uploaded;
VkImage font_image;
VkImageView font_image_view;
VkDeviceMemory font_mem;
VkBuffer upload_font_buffer;
VkDeviceMemory upload_font_buffer_mem;
/**/
ImGuiContext* imgui_context;
ImVec2 window_size;
struct swapchain_stats sw_stats;
};
// single global lock, for simplicity
std::mutex global_lock;
typedef std::lock_guard<std::mutex> scoped_lock;
std::unordered_map<uint64_t, void *> vk_object_to_data;
thread_local ImGuiContext* __MesaImGui;
#define HKEY(obj) ((uint64_t)(obj))
#define FIND(type, obj) (reinterpret_cast<type *>(find_object_data(HKEY(obj))))
static void *find_object_data(uint64_t obj)
{
::scoped_lock lk(global_lock);
return vk_object_to_data[obj];
}
static void map_object(uint64_t obj, void *data)
{
::scoped_lock lk(global_lock);
vk_object_to_data[obj] = data;
}
static void unmap_object(uint64_t obj)
{
::scoped_lock lk(global_lock);
vk_object_to_data.erase(obj);
}
/**/
#define VK_CHECK(expr) \
do { \
VkResult __result = (expr); \
if (__result != VK_SUCCESS) { \
spdlog::error("'{}' line {} failed with {}", \
#expr, __LINE__, vk_Result_to_str(__result)); \
} \
} while (0)
/**/
#define CHAR_CELSIUS "\xe2\x84\x83"
#define CHAR_FAHRENHEIT "\xe2\x84\x89"
static void shutdown_swapchain_font(struct swapchain_data*);
static VkLayerInstanceCreateInfo *get_instance_chain_info(const VkInstanceCreateInfo *pCreateInfo,
VkLayerFunction func)
{
vk_foreach_struct(item, pCreateInfo->pNext) {
if (item->sType == VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO &&
((VkLayerInstanceCreateInfo *) item)->function == func)
return (VkLayerInstanceCreateInfo *) item;
}
unreachable("instance chain info not found");
return NULL;
}
static VkLayerDeviceCreateInfo *get_device_chain_info(const VkDeviceCreateInfo *pCreateInfo,
VkLayerFunction func)
{
vk_foreach_struct(item, pCreateInfo->pNext) {
if (item->sType == VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO &&
((VkLayerDeviceCreateInfo *) item)->function == func)
return (VkLayerDeviceCreateInfo *)item;
}
unreachable("device chain info not found");
return NULL;
}
/**/
static struct instance_data *new_instance_data(VkInstance instance)
{
struct instance_data *data = new instance_data();
data->instance = instance;
data->params = {};
data->params.control = -1;
map_object(HKEY(data->instance), data);
return data;
}
static void destroy_instance_data(struct instance_data *data)
{
if (data->params.control >= 0)
os_socket_close(data->params.control);
unmap_object(HKEY(data->instance));
delete data;
}
static void instance_data_map_physical_devices(struct instance_data *instance_data,
bool map)
{
uint32_t physicalDeviceCount = 0;
instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
&physicalDeviceCount,
NULL);
std::vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
&physicalDeviceCount,
physicalDevices.data());
for (uint32_t i = 0; i < physicalDeviceCount; i++) {
if (map)
map_object(HKEY(physicalDevices[i]), instance_data);
else
unmap_object(HKEY(physicalDevices[i]));
}
}
/**/
static struct device_data *new_device_data(VkDevice device, struct instance_data *instance)
{
struct device_data *data = new device_data();
data->instance = instance;
data->device = device;
map_object(HKEY(data->device), data);
return data;
}
static struct queue_data *new_queue_data(VkQueue queue,
const VkQueueFamilyProperties *family_props,
uint32_t family_index,
struct device_data *device_data)
{
struct queue_data *data = new queue_data();
data->device = device_data;
data->queue = queue;
data->flags = family_props->queueFlags;
data->family_index = family_index;
map_object(HKEY(data->queue), data);
if (data->flags & VK_QUEUE_GRAPHICS_BIT)
device_data->graphic_queue = data;
return data;
}
static void destroy_queue(struct queue_data *data)
{
unmap_object(HKEY(data->queue));
delete data;
}
static void device_map_queues(struct device_data *data,
const VkDeviceCreateInfo *pCreateInfo)
{
uint32_t n_queues = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
n_queues += pCreateInfo->pQueueCreateInfos[i].queueCount;
data->queues.resize(n_queues);
struct instance_data *instance_data = data->instance;
uint32_t n_family_props;
instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
&n_family_props,
NULL);
std::vector<VkQueueFamilyProperties> family_props(n_family_props);
instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
&n_family_props,
family_props.data());
uint32_t queue_index = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
for (uint32_t j = 0; j < pCreateInfo->pQueueCreateInfos[i].queueCount; j++) {
VkQueue queue;
data->vtable.GetDeviceQueue(data->device,
pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex,
j, &queue);
VK_CHECK(data->set_device_loader_data(data->device, queue));
data->queues[queue_index++] =
new_queue_data(queue, &family_props[pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex],
pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex, data);
}
}
}
static void device_unmap_queues(struct device_data *data)
{
for (auto q : data->queues)
destroy_queue(q);
}
static void destroy_device_data(struct device_data *data)
{
unmap_object(HKEY(data->device));
delete data;
}
/**/
static struct command_buffer_data *new_command_buffer_data(VkCommandBuffer cmd_buffer,
VkCommandBufferLevel level,
struct device_data *device_data)
{
struct command_buffer_data *data = new command_buffer_data();
data->device = device_data;
data->cmd_buffer = cmd_buffer;
data->level = level;
map_object(HKEY(data->cmd_buffer), data);
return data;
}
static void destroy_command_buffer_data(struct command_buffer_data *data)
{
unmap_object(HKEY(data->cmd_buffer));
delete data;
}
/**/
static struct swapchain_data *new_swapchain_data(VkSwapchainKHR swapchain,
struct device_data *device_data)
{
struct instance_data *instance_data = device_data->instance;
struct swapchain_data *data = new swapchain_data();
data->device = device_data;
data->swapchain = swapchain;
data->window_size = ImVec2(instance_data->params.width, instance_data->params.height);
map_object(HKEY(data->swapchain), data);
return data;
}
static void destroy_swapchain_data(struct swapchain_data *data)
{
unmap_object(HKEY(data->swapchain));
delete data;
}
struct overlay_draw *get_overlay_draw(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct overlay_draw *draw = data->draws.empty() ?
nullptr : data->draws.front();
VkSemaphoreCreateInfo sem_info = {};
sem_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
if (draw && device_data->vtable.GetFenceStatus(device_data->device, draw->fence) == VK_SUCCESS) {
VK_CHECK(device_data->vtable.ResetFences(device_data->device,
1, &draw->fence));
data->draws.pop_front();
data->draws.push_back(draw);
return draw;
}
draw = new overlay_draw();
VkCommandBufferAllocateInfo cmd_buffer_info = {};
cmd_buffer_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmd_buffer_info.commandPool = data->command_pool;
cmd_buffer_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmd_buffer_info.commandBufferCount = 1;
VK_CHECK(device_data->vtable.AllocateCommandBuffers(device_data->device,
&cmd_buffer_info,
&draw->command_buffer));
VK_CHECK(device_data->set_device_loader_data(device_data->device,
draw->command_buffer));
VkFenceCreateInfo fence_info = {};
fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
VK_CHECK(device_data->vtable.CreateFence(device_data->device,
&fence_info,
NULL,
&draw->fence));
VK_CHECK(device_data->vtable.CreateSemaphore(device_data->device, &sem_info,
NULL, &draw->semaphore));
VK_CHECK(device_data->vtable.CreateSemaphore(device_data->device, &sem_info,
NULL, &draw->cross_engine_semaphore));
data->draws.push_back(draw);
return draw;
}
static void snapshot_swapchain_frame(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
update_hud_info(data->sw_stats, instance_data->params, device_data->properties.vendorID);
check_keybinds(data->sw_stats, instance_data->params, device_data->properties.vendorID);
// not currently used
// if (instance_data->params.control >= 0) {
// control_client_check(device_data);
// process_control_socket(instance_data);
// }
}
static void compute_swapchain_display(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
ImGui::SetCurrentContext(data->imgui_context);
if (HUDElements.colors.update)
HUDElements.convert_colors(instance_data->params);
ImGui::NewFrame();
{
::scoped_lock lk(instance_data->notifier.mutex);
position_layer(data->sw_stats, instance_data->params, data->window_size);
render_imgui(data->sw_stats, instance_data->params, data->window_size, true);
}
ImGui::PopStyleVar(3);
ImGui::EndFrame();
ImGui::Render();
}
static uint32_t vk_memory_type(struct device_data *data,
VkMemoryPropertyFlags properties,
uint32_t type_bits)
{
VkPhysicalDeviceMemoryProperties prop;
data->instance->vtable.GetPhysicalDeviceMemoryProperties(data->physical_device, &prop);
for (uint32_t i = 0; i < prop.memoryTypeCount; i++)
if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1<<i))
return i;
return 0xFFFFFFFF; // Unable to find memoryType
}
static void update_image_descriptor(struct swapchain_data *data, VkImageView image_view, VkDescriptorSet set)
{
struct device_data *device_data = data->device;
/* Descriptor set */
VkDescriptorImageInfo desc_image[1] = {};
desc_image[0].sampler = data->font_sampler;
desc_image[0].imageView = image_view;
desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkWriteDescriptorSet write_desc[1] = {};
write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
write_desc[0].dstSet = set;
write_desc[0].descriptorCount = 1;
write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
write_desc[0].pImageInfo = desc_image;
device_data->vtable.UpdateDescriptorSets(device_data->device, 1, write_desc, 0, NULL);
}
static void upload_image_data(struct device_data *device_data,
VkCommandBuffer command_buffer,
void *pixels,
VkDeviceSize upload_size,
uint32_t width,
uint32_t height,
VkBuffer& upload_buffer,
VkDeviceMemory& upload_buffer_mem,
VkImage image)
{
/* Upload buffer */
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = upload_size;
buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK(device_data->vtable.CreateBuffer(device_data->device, &buffer_info,
NULL, &upload_buffer));
VkMemoryRequirements upload_buffer_req;
device_data->vtable.GetBufferMemoryRequirements(device_data->device,
upload_buffer,
&upload_buffer_req);
VkMemoryAllocateInfo upload_alloc_info = {};
upload_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
upload_alloc_info.allocationSize = upload_buffer_req.size;
upload_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
upload_buffer_req.memoryTypeBits);
VK_CHECK(device_data->vtable.AllocateMemory(device_data->device,
&upload_alloc_info,
NULL,
&upload_buffer_mem));
VK_CHECK(device_data->vtable.BindBufferMemory(device_data->device,
upload_buffer,
upload_buffer_mem, 0));
/* Upload to Buffer */
char* map = NULL;
VK_CHECK(device_data->vtable.MapMemory(device_data->device,
upload_buffer_mem,
0, upload_size, 0, (void**)(&map)));
memcpy(map, pixels, upload_size);
VkMappedMemoryRange range[1] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = upload_buffer_mem;
range[0].size = upload_size;
VK_CHECK(device_data->vtable.FlushMappedMemoryRanges(device_data->device, 1, range));
device_data->vtable.UnmapMemory(device_data->device,
upload_buffer_mem);
/* Copy buffer to image */
VkImageMemoryBarrier copy_barrier[1] = {};
copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].image = image;
copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_barrier[0].subresourceRange.levelCount = 1;
copy_barrier[0].subresourceRange.layerCount = 1;
device_data->vtable.CmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_HOST_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL,
1, copy_barrier);
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = width;
region.imageExtent.height = height;
region.imageExtent.depth = 1;
device_data->vtable.CmdCopyBufferToImage(command_buffer,
upload_buffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &region);
VkImageMemoryBarrier use_barrier[1] = {};
use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].image = image;
use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
use_barrier[0].subresourceRange.levelCount = 1;
use_barrier[0].subresourceRange.layerCount = 1;
device_data->vtable.CmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, NULL,
0, NULL,
1, use_barrier);
}
static void create_image(struct swapchain_data *data,
VkDescriptorSet descriptor_set,
uint32_t width,
uint32_t height,
VkFormat format,
VkImage& image,
VkDeviceMemory& image_mem,
VkImageView& image_view)
{
struct device_data *device_data = data->device;
VkImageCreateInfo image_info = {};
image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_info.imageType = VK_IMAGE_TYPE_2D;
image_info.format = format;
image_info.extent.width = width;
image_info.extent.height = height;
image_info.extent.depth = 1;
image_info.mipLevels = 1;
image_info.arrayLayers = 1;
image_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK(device_data->vtable.CreateImage(device_data->device, &image_info,
NULL, &image));
VkMemoryRequirements font_image_req;
device_data->vtable.GetImageMemoryRequirements(device_data->device,
image, &font_image_req);
VkMemoryAllocateInfo image_alloc_info = {};
image_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
image_alloc_info.allocationSize = font_image_req.size;
image_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
font_image_req.memoryTypeBits);
VK_CHECK(device_data->vtable.AllocateMemory(device_data->device, &image_alloc_info,
NULL, &image_mem));
VK_CHECK(device_data->vtable.BindImageMemory(device_data->device,
image,
image_mem, 0));
/* Font image view */
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.image = image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = format;
view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view_info.subresourceRange.levelCount = 1;
view_info.subresourceRange.layerCount = 1;
VK_CHECK(device_data->vtable.CreateImageView(device_data->device, &view_info,
NULL, &image_view));
update_image_descriptor(data, image_view, descriptor_set);
}
static VkDescriptorSet create_image_with_desc(struct swapchain_data *data,
uint32_t width,
uint32_t height,
VkFormat format,
VkImage& image,
VkDeviceMemory& image_mem,
VkImageView& image_view)
{
struct device_data *device_data = data->device;
VkDescriptorSet descriptor_set {};
VkDescriptorSetAllocateInfo alloc_info {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorPool = data->descriptor_pool;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &data->descriptor_layout;
VK_CHECK(device_data->vtable.AllocateDescriptorSets(device_data->device,
&alloc_info,
&descriptor_set));
create_image(data, descriptor_set, width, height, format, image, image_mem, image_view);
return descriptor_set;
}
static void check_fonts(struct swapchain_data* data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
auto& params = instance_data->params;
ImGuiIO& io = ImGui::GetIO();
if (params.font_params_hash != data->sw_stats.font_params_hash)
{
spdlog::debug("Recreating font image");
VkDescriptorSet desc_set = (VkDescriptorSet)io.Fonts->TexID;
create_fonts(instance_data->params, data->sw_stats.font1, data->sw_stats.font_text);
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsAlpha8(&pixels, &width, &height);
// wait for rendering to complete, if any
device_data->vtable.DeviceWaitIdle(device_data->device);
shutdown_swapchain_font(data);
if (desc_set)
create_image(data, desc_set, width, height, VK_FORMAT_R8_UNORM, data->font_image, data->font_mem, data->font_image_view);
else
desc_set = create_image_with_desc(data, width, height, VK_FORMAT_R8_UNORM, data->font_image, data->font_mem, data->font_image_view);
io.Fonts->SetTexID((ImTextureID)desc_set);
data->font_uploaded = false;
data->sw_stats.font_params_hash = params.font_params_hash;
spdlog::debug("Default font tex size: {}x{}px", width, height);
}
}
static void ensure_swapchain_fonts(struct swapchain_data *data,
VkCommandBuffer command_buffer)
{
struct device_data *device_data = data->device;
check_fonts(data);
if (data->font_uploaded)
return;
data->font_uploaded = true;
ImGuiIO& io = ImGui::GetIO();
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsAlpha8(&pixels, &width, &height);
size_t upload_size = width * height * 1 * sizeof(char);
upload_image_data(device_data, command_buffer, pixels, upload_size, width, height, data->upload_font_buffer, data->upload_font_buffer_mem, data->font_image);
}
static void CreateOrResizeBuffer(struct device_data *data,
VkBuffer *buffer,
VkDeviceMemory *buffer_memory,
VkDeviceSize *buffer_size,
size_t new_size, VkBufferUsageFlagBits usage)
{
if (*buffer != VK_NULL_HANDLE)
data->vtable.DestroyBuffer(data->device, *buffer, NULL);
if (*buffer_memory)
data->vtable.FreeMemory(data->device, *buffer_memory, NULL);
if (data->properties.limits.nonCoherentAtomSize > 0)
{
VkDeviceSize atom_size = data->properties.limits.nonCoherentAtomSize - 1;
new_size = (new_size + atom_size) & ~atom_size;
}
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = new_size;
buffer_info.usage = usage;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK(data->vtable.CreateBuffer(data->device, &buffer_info, NULL, buffer));
VkMemoryRequirements req;
data->vtable.GetBufferMemoryRequirements(data->device, *buffer, &req);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = req.size;
alloc_info.memoryTypeIndex =
vk_memory_type(data, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
VK_CHECK(data->vtable.AllocateMemory(data->device, &alloc_info, NULL, buffer_memory));
VK_CHECK(data->vtable.BindBufferMemory(data->device, *buffer, *buffer_memory, 0));
*buffer_size = new_size;
}
static struct overlay_draw *render_swapchain_display(struct swapchain_data *data,
struct queue_data *present_queue,
const VkSemaphore *wait_semaphores,
unsigned n_wait_semaphores,
unsigned image_index)
{
ImDrawData* draw_data = ImGui::GetDrawData();
if (draw_data->TotalVtxCount == 0)
return NULL;
struct device_data *device_data = data->device;
struct overlay_draw *draw = get_overlay_draw(data);
device_data->vtable.ResetCommandBuffer(draw->command_buffer, 0);
VkRenderPassBeginInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
render_pass_info.renderPass = data->render_pass;
render_pass_info.framebuffer = data->framebuffers[image_index];
render_pass_info.renderArea.extent.width = data->width;
render_pass_info.renderArea.extent.height = data->height;
VkCommandBufferBeginInfo buffer_begin_info = {};
buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
device_data->vtable.BeginCommandBuffer(draw->command_buffer, &buffer_begin_info);
ensure_swapchain_fonts(data, draw->command_buffer);
/* Bounce the image to display back to color attachment layout for
* rendering on top of it.
*/
VkImageMemoryBarrier imb;
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = nullptr;
imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
imb.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
imb.image = data->images[image_index];
imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imb.subresourceRange.baseMipLevel = 0;
imb.subresourceRange.levelCount = 1;
imb.subresourceRange.baseArrayLayer = 0;
imb.subresourceRange.layerCount = 1;
imb.srcQueueFamilyIndex = present_queue->family_index;
imb.dstQueueFamilyIndex = device_data->graphic_queue->family_index;
device_data->vtable.CmdPipelineBarrier(draw->command_buffer,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
0, /* dependency flags */
0, nullptr, /* memory barriers */
0, nullptr, /* buffer memory barriers */
1, &imb); /* image memory barriers */
device_data->vtable.CmdBeginRenderPass(draw->command_buffer, &render_pass_info,
VK_SUBPASS_CONTENTS_INLINE);
/* Create/Resize vertex & index buffers */
size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert);
size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx);
if (draw->vertex_buffer_size < vertex_size) {
CreateOrResizeBuffer(device_data,
&draw->vertex_buffer,
&draw->vertex_buffer_mem,
&draw->vertex_buffer_size,
vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
}
if (draw->index_buffer_size < index_size) {
CreateOrResizeBuffer(device_data,
&draw->index_buffer,
&draw->index_buffer_mem,
&draw->index_buffer_size,
index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
}
/* Upload vertex & index data */
ImDrawVert* vtx_dst = NULL;
ImDrawIdx* idx_dst = NULL;
VK_CHECK(device_data->vtable.MapMemory(device_data->device, draw->vertex_buffer_mem,
0, draw->vertex_buffer_size, 0, (void**)(&vtx_dst)));
VK_CHECK(device_data->vtable.MapMemory(device_data->device, draw->index_buffer_mem,
0, draw->index_buffer_size, 0, (void**)(&idx_dst)));
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
vtx_dst += cmd_list->VtxBuffer.Size;
idx_dst += cmd_list->IdxBuffer.Size;
}
VkMappedMemoryRange range[2] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = draw->vertex_buffer_mem;
range[0].size = VK_WHOLE_SIZE;
range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[1].memory = draw->index_buffer_mem;
range[1].size = VK_WHOLE_SIZE;
VK_CHECK(device_data->vtable.FlushMappedMemoryRanges(device_data->device, 2, range));
device_data->vtable.UnmapMemory(device_data->device, draw->vertex_buffer_mem);
device_data->vtable.UnmapMemory(device_data->device, draw->index_buffer_mem);
/* Bind pipeline and descriptor sets */
device_data->vtable.CmdBindPipeline(draw->command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, data->pipeline);
#if 1 // disable if using >1 font textures
VkDescriptorSet desc_set[1] = {
//data->descriptor_set
reinterpret_cast<VkDescriptorSet>(ImGui::GetIO().Fonts->Fonts[0]->ContainerAtlas->TexID)
};
device_data->vtable.CmdBindDescriptorSets(draw->command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
data->pipeline_layout, 0, 1, desc_set, 0, NULL);
#endif
/* Bind vertex & index buffers */
VkBuffer vertex_buffers[1] = { draw->vertex_buffer };
VkDeviceSize vertex_offset[1] = { 0 };
device_data->vtable.CmdBindVertexBuffers(draw->command_buffer, 0, 1, vertex_buffers, vertex_offset);
device_data->vtable.CmdBindIndexBuffer(draw->command_buffer, draw->index_buffer, 0, VK_INDEX_TYPE_UINT16);
/* Setup viewport */
VkViewport viewport;
viewport.x = 0;
viewport.y = 0;
viewport.width = draw_data->DisplaySize.x;
viewport.height = draw_data->DisplaySize.y;
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
device_data->vtable.CmdSetViewport(draw->command_buffer, 0, 1, &viewport);
/* Setup scale and translation through push constants :
*
* Our visible imgui space lies from draw_data->DisplayPos (top left) to
* draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin
* is typically (0,0) for single viewport apps.
*/
float scale[2];
scale[0] = 2.0f / draw_data->DisplaySize.x;
scale[1] = 2.0f / draw_data->DisplaySize.y;
float translate[2];
translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0];
translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1];
device_data->vtable.CmdPushConstants(draw->command_buffer, data->pipeline_layout,
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(float) * 0, sizeof(float) * 2, scale);
device_data->vtable.CmdPushConstants(draw->command_buffer, data->pipeline_layout,
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(float) * 2, sizeof(float) * 2, translate);
// Render the command lists:
int vtx_offset = 0;
int idx_offset = 0;
ImVec2 display_pos = draw_data->DisplayPos;
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
{
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
// Apply scissor/clipping rectangle
// FIXME: We could clamp width/height based on clamped min/max values.
VkRect2D scissor;
scissor.offset.x = (int32_t)(pcmd->ClipRect.x - display_pos.x) > 0 ? (int32_t)(pcmd->ClipRect.x - display_pos.x) : 0;
scissor.offset.y = (int32_t)(pcmd->ClipRect.y - display_pos.y) > 0 ? (int32_t)(pcmd->ClipRect.y - display_pos.y) : 0;
scissor.extent.width = (uint32_t)(pcmd->ClipRect.z - pcmd->ClipRect.x);
scissor.extent.height = (uint32_t)(pcmd->ClipRect.w - pcmd->ClipRect.y + 1); // FIXME: Why +1 here?
device_data->vtable.CmdSetScissor(draw->command_buffer, 0, 1, &scissor);
#if 0 //enable if using >1 font textures or use texture array
VkDescriptorSet desc_set[1] = { (VkDescriptorSet)pcmd->TextureId };
device_data->vtable.CmdBindDescriptorSets(draw->command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
data->pipeline_layout, 0, 1, desc_set, 0, NULL);
#endif
// Draw
device_data->vtable.CmdDrawIndexed(draw->command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0);
idx_offset += pcmd->ElemCount;
}
vtx_offset += cmd_list->VtxBuffer.Size;
}
device_data->vtable.CmdEndRenderPass(draw->command_buffer);
if (device_data->graphic_queue->family_index != present_queue->family_index)
{
/* Transfer the image back to the present queue family
* image layout was already changed to present by the render pass
*/
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = nullptr;
imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
imb.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
imb.image = data->images[image_index];
imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imb.subresourceRange.baseMipLevel = 0;
imb.subresourceRange.levelCount = 1;
imb.subresourceRange.baseArrayLayer = 0;
imb.subresourceRange.layerCount = 1;
imb.srcQueueFamilyIndex = device_data->graphic_queue->family_index;
imb.dstQueueFamilyIndex = present_queue->family_index;
device_data->vtable.CmdPipelineBarrier(draw->command_buffer,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
0, /* dependency flags */
0, nullptr, /* memory barriers */
0, nullptr, /* buffer memory barriers */
1, &imb); /* image memory barriers */
}
device_data->vtable.EndCommandBuffer(draw->command_buffer);
/* When presenting on a different queue than where we're drawing the
* overlay *AND* when the application does not provide a semaphore to
* vkQueuePresent, insert our own cross engine synchronization
* semaphore.
*/
if (n_wait_semaphores == 0 && device_data->graphic_queue->queue != present_queue->queue) {
VkPipelineStageFlags stages_wait = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 0;
submit_info.pWaitDstStageMask = &stages_wait;
submit_info.waitSemaphoreCount = 0;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &draw->cross_engine_semaphore;
device_data->vtable.QueueSubmit(present_queue->queue, 1, &submit_info, VK_NULL_HANDLE);
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pWaitDstStageMask = &stages_wait;
submit_info.pCommandBuffers = &draw->command_buffer;
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitSemaphores = &draw->cross_engine_semaphore;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &draw->semaphore;
device_data->vtable.QueueSubmit(device_data->graphic_queue->queue, 1, &submit_info, draw->fence);
} else {
// wait in the fragment stage until the swapchain image is ready
std::vector<VkPipelineStageFlags> stages_wait(n_wait_semaphores, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &draw->command_buffer;
submit_info.pWaitDstStageMask = stages_wait.data();
submit_info.waitSemaphoreCount = n_wait_semaphores;
submit_info.pWaitSemaphores = wait_semaphores;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &draw->semaphore;
device_data->vtable.QueueSubmit(device_data->graphic_queue->queue, 1, &submit_info, draw->fence);
}
return draw;
}
static const uint32_t overlay_vert_spv[] = {
#include "overlay.vert.spv.h"
};
static const uint32_t overlay_frag_spv[] = {
#include "overlay.frag.spv.h"
};
static void setup_swapchain_data_pipeline(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
VkShaderModule vert_module, frag_module;
/* Create shader modules */
VkShaderModuleCreateInfo vert_info = {};
vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
vert_info.codeSize = sizeof(overlay_vert_spv);
vert_info.pCode = overlay_vert_spv;
VK_CHECK(device_data->vtable.CreateShaderModule(device_data->device,
&vert_info, NULL, &vert_module));
VkShaderModuleCreateInfo frag_info = {};
frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
frag_info.codeSize = sizeof(overlay_frag_spv);
frag_info.pCode = (uint32_t*)overlay_frag_spv;
VK_CHECK(device_data->vtable.CreateShaderModule(device_data->device,
&frag_info, NULL, &frag_module));
/* Font sampler */
VkSamplerCreateInfo sampler_info = {};
sampler_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler_info.magFilter = VK_FILTER_LINEAR;
sampler_info.minFilter = VK_FILTER_LINEAR;
sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.minLod = -1000;
sampler_info.maxLod = 1000;
sampler_info.maxAnisotropy = 1.0f;
VK_CHECK(device_data->vtable.CreateSampler(device_data->device, &sampler_info,
NULL, &data->font_sampler));
/* Descriptor pool */
VkDescriptorPoolSize sampler_pool_size = {};
sampler_pool_size.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
sampler_pool_size.descriptorCount = 1;
VkDescriptorPoolCreateInfo desc_pool_info = {};
desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
desc_pool_info.maxSets = 1;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &sampler_pool_size;
VK_CHECK(device_data->vtable.CreateDescriptorPool(device_data->device,
&desc_pool_info,
NULL, &data->descriptor_pool));
/* Descriptor layout */
VkSampler sampler[1] = { data->font_sampler };
VkDescriptorSetLayoutBinding binding[1] = {};
binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
binding[0].descriptorCount = 1;
binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
binding[0].pImmutableSamplers = sampler;
VkDescriptorSetLayoutCreateInfo set_layout_info = {};
set_layout_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
set_layout_info.bindingCount = 1;
set_layout_info.pBindings = binding;
VK_CHECK(device_data->vtable.CreateDescriptorSetLayout(device_data->device,
&set_layout_info,
NULL, &data->descriptor_layout));
/* Descriptor set */
/*
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorPool = data->descriptor_pool;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &data->descriptor_layout;
VK_CHECK(device_data->vtable.AllocateDescriptorSets(device_data->device,
&alloc_info,
&data->descriptor_set));
*/
/* Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full
* 3d projection matrix
*/
VkPushConstantRange push_constants[1] = {};
push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
push_constants[0].offset = sizeof(float) * 0;
push_constants[0].size = sizeof(float) * 4;
VkPipelineLayoutCreateInfo layout_info = {};
layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layout_info.setLayoutCount = 1;
layout_info.pSetLayouts = &data->descriptor_layout;
layout_info.pushConstantRangeCount = 1;
layout_info.pPushConstantRanges = push_constants;
VK_CHECK(device_data->vtable.CreatePipelineLayout(device_data->device,
&layout_info,
NULL, &data->pipeline_layout));
VkPipelineShaderStageCreateInfo stage[2] = {};
stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
stage[0].module = vert_module;
stage[0].pName = "main";
stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
stage[1].module = frag_module;
stage[1].pName = "main";
VkVertexInputBindingDescription binding_desc[1] = {};
binding_desc[0].stride = sizeof(ImDrawVert);
binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
VkVertexInputAttributeDescription attribute_desc[3] = {};
attribute_desc[0].location = 0;
attribute_desc[0].binding = binding_desc[0].binding;
attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos);
attribute_desc[1].location = 1;
attribute_desc[1].binding = binding_desc[0].binding;
attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv);
attribute_desc[2].location = 2;
attribute_desc[2].binding = binding_desc[0].binding;
attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM;
attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col);
VkPipelineVertexInputStateCreateInfo vertex_info = {};
vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertex_info.vertexBindingDescriptionCount = 1;
vertex_info.pVertexBindingDescriptions = binding_desc;
vertex_info.vertexAttributeDescriptionCount = 3;
vertex_info.pVertexAttributeDescriptions = attribute_desc;
VkPipelineInputAssemblyStateCreateInfo ia_info = {};
ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkPipelineViewportStateCreateInfo viewport_info = {};
viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport_info.viewportCount = 1;
viewport_info.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo raster_info = {};
raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
raster_info.polygonMode = VK_POLYGON_MODE_FILL;
raster_info.cullMode = VK_CULL_MODE_NONE;
raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
raster_info.lineWidth = 1.0f;
VkPipelineMultisampleStateCreateInfo ms_info = {};
ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineColorBlendAttachmentState color_attachment[1] = {};
color_attachment[0].blendEnable = VK_TRUE;
color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
VkPipelineDepthStencilStateCreateInfo depth_info = {};
depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
VkPipelineColorBlendStateCreateInfo blend_info = {};
blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blend_info.attachmentCount = 1;
blend_info.pAttachments = color_attachment;
VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamic_state = {};
dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states);
dynamic_state.pDynamicStates = dynamic_states;
VkGraphicsPipelineCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.flags = 0;
info.stageCount = 2;
info.pStages = stage;
info.pVertexInputState = &vertex_info;
info.pInputAssemblyState = &ia_info;
info.pViewportState = &viewport_info;
info.pRasterizationState = &raster_info;
info.pMultisampleState = &ms_info;
info.pDepthStencilState = &depth_info;
info.pColorBlendState = &blend_info;
info.pDynamicState = &dynamic_state;
info.layout = data->pipeline_layout;
info.renderPass = data->render_pass;
VK_CHECK(
device_data->vtable.CreateGraphicsPipelines(device_data->device, VK_NULL_HANDLE,
1, &info,
NULL, &data->pipeline));
device_data->vtable.DestroyShaderModule(device_data->device, vert_module, NULL);
device_data->vtable.DestroyShaderModule(device_data->device, frag_module, NULL);
check_fonts(data);
// if (data->descriptor_set)
// update_image_descriptor(data, data->font_image_view[0], data->descriptor_set);
}
// TODO probably needs colorspace check too
static void convert_colors_vk(VkFormat format, struct swapchain_stats& sw_stats, struct overlay_params& params)
{
bool do_conv = false;
switch (format) {
case VK_FORMAT_R8_SRGB:
case VK_FORMAT_R8G8_SRGB:
case VK_FORMAT_R8G8B8_SRGB:
case VK_FORMAT_B8G8R8_SRGB:
case VK_FORMAT_R8G8B8A8_SRGB:
case VK_FORMAT_B8G8R8A8_SRGB:
case VK_FORMAT_A8B8G8R8_SRGB_PACK32:
case VK_FORMAT_BC1_RGB_SRGB_BLOCK:
case VK_FORMAT_BC1_RGBA_SRGB_BLOCK:
case VK_FORMAT_BC2_SRGB_BLOCK:
case VK_FORMAT_BC3_SRGB_BLOCK:
case VK_FORMAT_BC7_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_6x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_8x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x5_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x6_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x8_SRGB_BLOCK:
case VK_FORMAT_ASTC_10x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x10_SRGB_BLOCK:
case VK_FORMAT_ASTC_12x12_SRGB_BLOCK:
case VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG:
case VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG:
case VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG:
case VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG:
do_conv = true;
break;
default:
break;
}
HUDElements.convert_colors(do_conv, params);
}
static void setup_swapchain_data(struct swapchain_data *data,
const VkSwapchainCreateInfoKHR *pCreateInfo)
{
struct device_data *device_data = data->device;
data->width = pCreateInfo->imageExtent.width;
data->height = pCreateInfo->imageExtent.height;
data->format = pCreateInfo->imageFormat;
data->imgui_context = ImGui::CreateContext();
ImGui::SetCurrentContext(data->imgui_context);
ImGui::GetIO().IniFilename = NULL;
ImGui::GetIO().DisplaySize = ImVec2((float)data->width, (float)data->height);
convert_colors_vk(pCreateInfo->imageFormat, data->sw_stats, device_data->instance->params);
/* Render pass */
VkAttachmentDescription attachment_desc = {};
attachment_desc.format = pCreateInfo->imageFormat;
attachment_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attachment_desc.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachment_desc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment_desc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment_desc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachment_desc.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachment_desc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference color_attachment = {};
color_attachment.attachment = 0;
color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_attachment;
VkSubpassDependency dependency = {};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.srcAccessMask = 0;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkRenderPassCreateInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
render_pass_info.attachmentCount = 1;
render_pass_info.pAttachments = &attachment_desc;
render_pass_info.subpassCount = 1;
render_pass_info.pSubpasses = &subpass;
render_pass_info.dependencyCount = 1;
render_pass_info.pDependencies = &dependency;
VK_CHECK(device_data->vtable.CreateRenderPass(device_data->device,
&render_pass_info,
NULL, &data->render_pass));
setup_swapchain_data_pipeline(data);
uint32_t n_images = 0;
VK_CHECK(device_data->vtable.GetSwapchainImagesKHR(device_data->device,
data->swapchain,
&n_images,
NULL));
data->images.resize(n_images);
data->image_views.resize(n_images);
data->framebuffers.resize(n_images);
VK_CHECK(device_data->vtable.GetSwapchainImagesKHR(device_data->device,
data->swapchain,
&n_images,
data->images.data()));
if (n_images != data->images.size()) {
data->images.resize(n_images);
data->image_views.resize(n_images);
data->framebuffers.resize(n_images);
}
/* Image views */
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = pCreateInfo->imageFormat;
view_info.components.r = VK_COMPONENT_SWIZZLE_R;
view_info.components.g = VK_COMPONENT_SWIZZLE_G;
view_info.components.b = VK_COMPONENT_SWIZZLE_B;
view_info.components.a = VK_COMPONENT_SWIZZLE_A;
view_info.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
for (size_t i = 0; i < data->images.size(); i++) {
view_info.image = data->images[i];
VK_CHECK(device_data->vtable.CreateImageView(device_data->device,
&view_info, NULL,
&data->image_views[i]));
}
/* Framebuffers */
VkImageView attachment[1];
VkFramebufferCreateInfo fb_info = {};
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.renderPass = data->render_pass;
fb_info.attachmentCount = 1;
fb_info.pAttachments = attachment;
fb_info.width = data->width;
fb_info.height = data->height;
fb_info.layers = 1;
for (size_t i = 0; i < data->image_views.size(); i++) {
attachment[0] = data->image_views[i];
VK_CHECK(device_data->vtable.CreateFramebuffer(device_data->device, &fb_info,
NULL, &data->framebuffers[i]));
}
/* Command buffer pool */
VkCommandPoolCreateInfo cmd_buffer_pool_info = {};
cmd_buffer_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmd_buffer_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
cmd_buffer_pool_info.queueFamilyIndex = device_data->graphic_queue->family_index;
VK_CHECK(device_data->vtable.CreateCommandPool(device_data->device,
&cmd_buffer_pool_info,
NULL, &data->command_pool));
}
static void shutdown_swapchain_font(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
device_data->vtable.DestroyImageView(device_data->device, data->font_image_view, NULL);
device_data->vtable.DestroyImage(device_data->device, data->font_image, NULL);
device_data->vtable.FreeMemory(device_data->device, data->font_mem, NULL);
device_data->vtable.DestroyBuffer(device_data->device, data->upload_font_buffer, NULL);
device_data->vtable.FreeMemory(device_data->device, data->upload_font_buffer_mem, NULL);
}
static void shutdown_swapchain_data(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
for (auto draw : data->draws) {
device_data->vtable.DestroySemaphore(device_data->device, draw->cross_engine_semaphore, NULL);
device_data->vtable.DestroySemaphore(device_data->device, draw->semaphore, NULL);
device_data->vtable.DestroyFence(device_data->device, draw->fence, NULL);
device_data->vtable.DestroyBuffer(device_data->device, draw->vertex_buffer, NULL);
device_data->vtable.DestroyBuffer(device_data->device, draw->index_buffer, NULL);
device_data->vtable.FreeMemory(device_data->device, draw->vertex_buffer_mem, NULL);
device_data->vtable.FreeMemory(device_data->device, draw->index_buffer_mem, NULL);
delete draw;
}
for (size_t i = 0; i < data->images.size(); i++) {
device_data->vtable.DestroyImageView(device_data->device, data->image_views[i], NULL);
device_data->vtable.DestroyFramebuffer(device_data->device, data->framebuffers[i], NULL);
}
device_data->vtable.DestroyRenderPass(device_data->device, data->render_pass, NULL);
device_data->vtable.DestroyCommandPool(device_data->device, data->command_pool, NULL);
device_data->vtable.DestroyPipeline(device_data->device, data->pipeline, NULL);
device_data->vtable.DestroyPipelineLayout(device_data->device, data->pipeline_layout, NULL);
device_data->vtable.DestroyDescriptorPool(device_data->device,
data->descriptor_pool, NULL);
device_data->vtable.DestroyDescriptorSetLayout(device_data->device,
data->descriptor_layout, NULL);
device_data->vtable.DestroySampler(device_data->device, data->font_sampler, NULL);
shutdown_swapchain_font(data);
ImGui::DestroyContext(data->imgui_context);
}
static struct overlay_draw *before_present(struct swapchain_data *swapchain_data,
struct queue_data *present_queue,
const VkSemaphore *wait_semaphores,
unsigned n_wait_semaphores,
unsigned imageIndex)
{
struct overlay_draw *draw = NULL;
snapshot_swapchain_frame(swapchain_data);
if (swapchain_data->sw_stats.n_frames > 0) {
compute_swapchain_display(swapchain_data);
draw = render_swapchain_display(swapchain_data, present_queue,
wait_semaphores, n_wait_semaphores,
imageIndex);
}
return draw;
}
static VkResult overlay_CreateSwapchainKHR(
VkDevice device,
const VkSwapchainCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSwapchainKHR* pSwapchain)
{
struct device_data *device_data = FIND(struct device_data, device);
array<VkPresentModeKHR, 4> modes = {VK_PRESENT_MODE_FIFO_RELAXED_KHR,
VK_PRESENT_MODE_IMMEDIATE_KHR,
VK_PRESENT_MODE_MAILBOX_KHR,
VK_PRESENT_MODE_FIFO_KHR};
if (device_data->instance->params.vsync < 4)
const_cast<VkSwapchainCreateInfoKHR*> (pCreateInfo)->presentMode = modes[device_data->instance->params.vsync];
VkResult result = device_data->vtable.CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain);
if (result != VK_SUCCESS) return result;
struct swapchain_data *swapchain_data = new_swapchain_data(*pSwapchain, device_data);
setup_swapchain_data(swapchain_data, pCreateInfo);
const VkPhysicalDeviceProperties& prop = device_data->properties;
swapchain_data->sw_stats.version_vk.major = VK_VERSION_MAJOR(prop.apiVersion);
swapchain_data->sw_stats.version_vk.minor = VK_VERSION_MINOR(prop.apiVersion);
swapchain_data->sw_stats.version_vk.patch = VK_VERSION_PATCH(prop.apiVersion);
swapchain_data->sw_stats.engineName = device_data->instance->engineName;
swapchain_data->sw_stats.engineVersion = device_data->instance->engineVersion;
swapchain_data->sw_stats.engine = device_data->instance->engine;
std::stringstream ss;
// ss << prop.deviceName;
if (prop.vendorID == 0x10de) {
ss << " " << ((prop.driverVersion >> 22) & 0x3ff);
ss << "." << ((prop.driverVersion >> 14) & 0x0ff);
ss << "." << std::setw(2) << std::setfill('0') << ((prop.driverVersion >> 6) & 0x0ff);
}
#ifdef _WIN32
else if (prop.vendorID == 0x8086) {
ss << " " << (prop.driverVersion >> 14);
ss << "." << (prop.driverVersion & 0x3fff);
}
#endif
else {
ss << " " << VK_VERSION_MAJOR(prop.driverVersion);
if (VK_VERSION_PATCH(prop.driverVersion) >= 99){
ss << "." << VK_VERSION_MINOR(prop.driverVersion) + 1;
ss << "." << "0";
} else {
ss << "." << VK_VERSION_MINOR(prop.driverVersion);
ss << "." << VK_VERSION_PATCH(prop.driverVersion);
}
}
std::string driverVersion = ss.str();
std::string deviceName = prop.deviceName;
if (!is_blacklisted()) {
#ifdef __gnu_linux__
parse_pciids();
get_device_name(prop.vendorID, prop.deviceID, swapchain_data->sw_stats);
init_system_info();
#endif
init_gpu_stats(device_data->properties.vendorID, device_data->instance->params);
}
if(driverProps.driverID == VK_DRIVER_ID_NVIDIA_PROPRIETARY){
swapchain_data->sw_stats.driverName = "NVIDIA";
}
if(driverProps.driverID == VK_DRIVER_ID_AMD_PROPRIETARY)
swapchain_data->sw_stats.driverName = "AMDGPU-PRO";
if(driverProps.driverID == VK_DRIVER_ID_AMD_OPEN_SOURCE)
swapchain_data->sw_stats.driverName = "AMDVLK";
if(driverProps.driverID == VK_DRIVER_ID_MESA_RADV){
if(deviceName.find("ACO") != std::string::npos){
swapchain_data->sw_stats.driverName = "RADV/ACO";
} else {
swapchain_data->sw_stats.driverName = "RADV";
}
}
if (!swapchain_data->sw_stats.driverName.empty())
swapchain_data->sw_stats.driverName += driverVersion;
else
swapchain_data->sw_stats.driverName = prop.deviceName + driverVersion;
return result;
}
static void overlay_DestroySwapchainKHR(
VkDevice device,
VkSwapchainKHR swapchain,
const VkAllocationCallbacks* pAllocator)
{
if (swapchain == VK_NULL_HANDLE) {
struct device_data *device_data = FIND(struct device_data, device);
device_data->vtable.DestroySwapchainKHR(device, swapchain, pAllocator);
return;
}
struct swapchain_data *swapchain_data =
FIND(struct swapchain_data, swapchain);
shutdown_swapchain_data(swapchain_data);
swapchain_data->device->vtable.DestroySwapchainKHR(device, swapchain, pAllocator);
destroy_swapchain_data(swapchain_data);
}
void FpsLimiter(struct fps_limit& stats){
stats.sleepTime = stats.targetFrameTime - (stats.frameStart - stats.frameEnd);
if (stats.sleepTime > stats.frameOverhead) {
auto adjustedSleep = stats.sleepTime - stats.frameOverhead;
this_thread::sleep_for(adjustedSleep);
stats.frameOverhead = ((Clock::now() - stats.frameStart) - adjustedSleep);
if (stats.frameOverhead > stats.targetFrameTime / 2)
stats.frameOverhead = Clock::duration(0);
}
}
static VkResult overlay_QueuePresentKHR(
VkQueue queue,
const VkPresentInfoKHR* pPresentInfo)
{
struct queue_data *queue_data = FIND(struct queue_data, queue);
/* Otherwise we need to add our overlay drawing semaphore to the list of
* semaphores to wait on. If we don't do that the presented picture might
* be have incomplete overlay drawings.
*/
VkResult result = VK_SUCCESS;
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) {
VkSwapchainKHR swapchain = pPresentInfo->pSwapchains[i];
struct swapchain_data *swapchain_data =
FIND(struct swapchain_data, swapchain);
uint32_t image_index = pPresentInfo->pImageIndices[i];
VkPresentInfoKHR present_info = *pPresentInfo;
present_info.swapchainCount = 1;
present_info.pSwapchains = &swapchain;
present_info.pImageIndices = &image_index;
struct overlay_draw *draw = before_present(swapchain_data,
queue_data,
pPresentInfo->pWaitSemaphores,
pPresentInfo->waitSemaphoreCount,
image_index);
/* Because the submission of the overlay draw waits on the semaphores
* handed for present, we don't need to have this present operation
* wait on them as well, we can just wait on the overlay submission
* semaphore.
*/
if (draw) {
present_info.pWaitSemaphores = &draw->semaphore;
present_info.waitSemaphoreCount = 1;
}
VkResult chain_result = queue_data->device->vtable.QueuePresentKHR(queue, &present_info);
if (pPresentInfo->pResults)
pPresentInfo->pResults[i] = chain_result;
if (chain_result != VK_SUCCESS && result == VK_SUCCESS)
result = chain_result;
}
using namespace std::chrono_literals;
if (fps_limit_stats.targetFrameTime > 0s){
fps_limit_stats.frameStart = Clock::now();
FpsLimiter(fps_limit_stats);
fps_limit_stats.frameEnd = Clock::now();
}
return result;
}
static VkResult overlay_BeginCommandBuffer(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
/* Otherwise record a begin query as first command. */
VkResult result = device_data->vtable.BeginCommandBuffer(commandBuffer, pBeginInfo);
return result;
}
static VkResult overlay_EndCommandBuffer(
VkCommandBuffer commandBuffer)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
return device_data->vtable.EndCommandBuffer(commandBuffer);
}
static VkResult overlay_ResetCommandBuffer(
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
return device_data->vtable.ResetCommandBuffer(commandBuffer, flags);
}
static void overlay_CmdExecuteCommands(
VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
device_data->vtable.CmdExecuteCommands(commandBuffer, commandBufferCount, pCommandBuffers);
}
static VkResult overlay_AllocateCommandBuffers(
VkDevice device,
const VkCommandBufferAllocateInfo* pAllocateInfo,
VkCommandBuffer* pCommandBuffers)
{
struct device_data *device_data = FIND(struct device_data, device);
VkResult result =
device_data->vtable.AllocateCommandBuffers(device, pAllocateInfo, pCommandBuffers);
if (result != VK_SUCCESS)
return result;
for (uint32_t i = 0; i < pAllocateInfo->commandBufferCount; i++) {
new_command_buffer_data(pCommandBuffers[i], pAllocateInfo->level,
device_data);
}
return result;
}
static void overlay_FreeCommandBuffers(
VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers)
{
struct device_data *device_data = FIND(struct device_data, device);
for (uint32_t i = 0; i < commandBufferCount; i++) {
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, pCommandBuffers[i]);
/* It is legal to free a NULL command buffer*/
if (!cmd_buffer_data)
continue;
destroy_command_buffer_data(cmd_buffer_data);
}
device_data->vtable.FreeCommandBuffers(device, commandPool,
commandBufferCount, pCommandBuffers);
}
static VkResult overlay_QueueSubmit(
VkQueue queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence fence)
{
struct queue_data *queue_data = FIND(struct queue_data, queue);
struct device_data *device_data = queue_data->device;
return device_data->vtable.QueueSubmit(queue, submitCount, pSubmits, fence);
}
static VkResult overlay_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
struct instance_data *instance_data =
FIND(struct instance_data, physicalDevice);
VkLayerDeviceCreateInfo *chain_info =
get_device_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(NULL, "vkCreateDevice");
if (fpCreateDevice == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkPhysicalDeviceFeatures device_features = {};
VkDeviceCreateInfo device_info = *pCreateInfo;
std::vector<const char*> enabled_extensions(device_info.ppEnabledExtensionNames,
device_info.ppEnabledExtensionNames +
device_info.enabledExtensionCount);
uint32_t extension_count;
instance_data->vtable.EnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extension_count, nullptr);
std::vector<VkExtensionProperties> available_extensions(extension_count);
instance_data->vtable.EnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extension_count, available_extensions.data());
bool can_get_driver_info = instance_data->api_version < VK_API_VERSION_1_1 ? false : true;
// VK_KHR_driver_properties became core in 1.2
if (instance_data->api_version < VK_API_VERSION_1_2 && can_get_driver_info) {
for (auto& extension : available_extensions) {
if (extension.extensionName == std::string(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME)) {
for (auto& enabled : enabled_extensions) {
if (enabled == std::string(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME))
goto DONT;
}
enabled_extensions.push_back(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME);
DONT:
goto FOUND;
}
}
can_get_driver_info = false;
FOUND:;
}
device_info.enabledExtensionCount = enabled_extensions.size();
device_info.ppEnabledExtensionNames = enabled_extensions.data();
if (pCreateInfo->pEnabledFeatures)
device_features = *(pCreateInfo->pEnabledFeatures);
device_info.pEnabledFeatures = &device_features;
VkResult result = fpCreateDevice(physicalDevice, &device_info, pAllocator, pDevice);
if (result != VK_SUCCESS) return result;
struct device_data *device_data = new_device_data(*pDevice, instance_data);
device_data->physical_device = physicalDevice;
vk_load_device_commands(*pDevice, fpGetDeviceProcAddr, &device_data->vtable);
instance_data->vtable.GetPhysicalDeviceProperties(device_data->physical_device,
&device_data->properties);
VkLayerDeviceCreateInfo *load_data_info =
get_device_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
device_data->set_device_loader_data = load_data_info->u.pfnSetDeviceLoaderData;
driverProps.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES;
driverProps.pNext = nullptr;
if (can_get_driver_info) {
VkPhysicalDeviceProperties2 deviceProps = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2, &driverProps};
instance_data->vtable.GetPhysicalDeviceProperties2(device_data->physical_device, &deviceProps);
}
if (!is_blacklisted()) {
device_map_queues(device_data, pCreateInfo);
}
return result;
}
static void overlay_DestroyDevice(
VkDevice device,
const VkAllocationCallbacks* pAllocator)
{
struct device_data *device_data = FIND(struct device_data, device);
if (!is_blacklisted())
device_unmap_queues(device_data);
device_data->vtable.DestroyDevice(device, pAllocator);
destroy_device_data(device_data);
}
static VkResult overlay_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
VkLayerInstanceCreateInfo *chain_info =
get_instance_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
std::string engineVersion,engineName;
enum EngineTypes engine = EngineTypes::UNKNOWN;
if (!is_blacklisted(true)) {
const char* pEngineName = nullptr;
if (pCreateInfo->pApplicationInfo)
pEngineName = pCreateInfo->pApplicationInfo->pEngineName;
if (pEngineName)
engineName = pEngineName;
if (engineName == "DXVK" || engineName == "vkd3d") {
int engineVer = pCreateInfo->pApplicationInfo->engineVersion;
engineVersion = to_string(VK_VERSION_MAJOR(engineVer)) + "." + to_string(VK_VERSION_MINOR(engineVer)) + "." + to_string(VK_VERSION_PATCH(engineVer));
}
if (engineName == "DXVK")
engine = DXVK;
else if (engineName == "vkd3d")
engine = VKD3D;
else if(engineName == "mesa zink") {
engine = ZINK;
#if !defined(_WIN32)
MangoHud::GL::sw_stats.engine = ZINK;
#endif
}
else if (engineName == "Damavand")
engine = DAMAVAND;
else if (engineName == "Feral3D")
engine = FERAL3D;
else
engine = VULKAN;
}
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr =
chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkCreateInstance fpCreateInstance =
(PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance");
if (fpCreateInstance == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
if (result != VK_SUCCESS) return result;
struct instance_data *instance_data = new_instance_data(*pInstance);
vk_load_instance_commands(instance_data->instance,
fpGetInstanceProcAddr,
&instance_data->vtable);
instance_data_map_physical_devices(instance_data, true);
parse_overlay_config(&instance_data->params, getenv("MANGOHUD_CONFIG"));
//check for blacklist item in the config file
for (auto& item : instance_data->params.blacklist) {
add_blacklist(item);
}
if (!is_blacklisted()) {
#ifdef __gnu_linux__
instance_data->notifier.params = &instance_data->params;
start_notifier(instance_data->notifier);
#endif
init_cpu_stats(instance_data->params);
// Adjust height for DXVK/VKD3D version number
if (engineName == "DXVK" || engineName == "VKD3D"){
if (instance_data->params.font_size){
instance_data->params.height += instance_data->params.font_size * instance_data->params.font_scale / 2;
} else {
instance_data->params.height += 24 * instance_data->params.font_scale / 2;
}
}
instance_data->engine = engine;
instance_data->engineName = engineName;
instance_data->engineVersion = engineVersion;
}
instance_data->api_version = pCreateInfo->pApplicationInfo ? pCreateInfo->pApplicationInfo->apiVersion : VK_API_VERSION_1_0;
return result;
}
static void overlay_DestroyInstance(
VkInstance instance,
const VkAllocationCallbacks* pAllocator)
{
struct instance_data *instance_data = FIND(struct instance_data, instance);
instance_data_map_physical_devices(instance_data, false);
instance_data->vtable.DestroyInstance(instance, pAllocator);
if (!is_blacklisted())
#ifdef __gnu_linux__
stop_notifier(instance_data->notifier);
#endif
destroy_instance_data(instance_data);
}
extern "C" VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL overlay_GetDeviceProcAddr(VkDevice dev,
const char *funcName);
static const struct {
const char *name;
void *ptr;
} name_to_funcptr_map[] = {
{ "vkGetDeviceProcAddr", (void *) overlay_GetDeviceProcAddr },
#define ADD_HOOK(fn) { "vk" # fn, (void *) overlay_ ## fn }
#define ADD_ALIAS_HOOK(alias, fn) { "vk" # alias, (void *) overlay_ ## fn }
ADD_HOOK(AllocateCommandBuffers),
ADD_HOOK(FreeCommandBuffers),
ADD_HOOK(ResetCommandBuffer),
ADD_HOOK(BeginCommandBuffer),
ADD_HOOK(EndCommandBuffer),
ADD_HOOK(CmdExecuteCommands),
ADD_HOOK(CreateSwapchainKHR),
ADD_HOOK(QueuePresentKHR),
ADD_HOOK(DestroySwapchainKHR),
ADD_HOOK(QueueSubmit),
ADD_HOOK(CreateDevice),
ADD_HOOK(DestroyDevice),
ADD_HOOK(CreateInstance),
ADD_HOOK(DestroyInstance),
#undef ADD_HOOK
};
static void *find_ptr(const char *name)
{
std::string f(name);
if (is_blacklisted() && (f != "vkCreateInstance" && f != "vkDestroyInstance" && f != "vkCreateDevice" && f != "vkDestroyDevice"))
{
return NULL;
}
for (uint32_t i = 0; i < ARRAY_SIZE(name_to_funcptr_map); i++) {
if (strcmp(name, name_to_funcptr_map[i].name) == 0)
return name_to_funcptr_map[i].ptr;
}
return NULL;
}
extern "C" VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL overlay_GetDeviceProcAddr(VkDevice dev,
const char *funcName)
{
void *ptr = find_ptr(funcName);
if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
if (dev == NULL) return NULL;
struct device_data *device_data = FIND(struct device_data, dev);
if (device_data->vtable.GetDeviceProcAddr == NULL) return NULL;
return device_data->vtable.GetDeviceProcAddr(dev, funcName);
}
extern "C" VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL overlay_GetInstanceProcAddr(VkInstance instance,
const char *funcName)
{
void *ptr = find_ptr(funcName);
if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
if (instance == NULL) return NULL;
struct instance_data *instance_data = FIND(struct instance_data, instance);
if (instance_data->vtable.GetInstanceProcAddr == NULL) return NULL;
return instance_data->vtable.GetInstanceProcAddr(instance, funcName);
}