// nolint: gofmt, goimports // Copyright 2009 The Go Authors. All rights reserved. // Dehydrated certificate modifications Copyright 2015-2017 Jeremy Rand. All // rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Generate a self-signed X.509 certificate for a TLS server. Outputs to // 'cert.pem' and 'key.pem' and will overwrite existing files. // This code has been modified from the stock Go code to generate // "dehydrated certificates", suitable for inclusion in a Namecoin name. // Last rebased against Go 1.8.3. // Future rebases need to rebase all of the main, parent, and falseHost flows. package main import ( "bytes" "crypto/ecdsa" "crypto/elliptic" "crypto/rand" "crypto/rsa" "crypto/x509" "crypto/x509/pkix" "encoding/base64" "encoding/pem" "flag" "fmt" "log" "math/big" //"net" "os" //"strings" "time" "github.com/namecoin/ncdns/certdehydrate" ) var ( //host = flag.String("host", "", "Comma-separated hostnames and IPs to generate a certificate for") host = flag.String("host", "", "Hostname to generate a certificate for (only use one)") validFrom = flag.String("start-date", "", "Creation date formatted as Jan 1 15:04:05 2011") validFor = flag.Duration("duration", 365*24*time.Hour, "Duration that certificate is valid for") //isCA = flag.Bool("ca", false, "whether this cert should be its own Certificate Authority") //rsaBits = flag.Int("rsa-bits", 2048, "Size of RSA key to generate. Ignored if --ecdsa-curve is set") //ecdsaCurve = flag.String("ecdsa-curve", "", "ECDSA curve to use to generate a key. Valid values are P224, P256, P384, P521") ecdsaCurve = flag.String("ecdsa-curve", "P256", "ECDSA curve to use to generate a key. Valid values are P224, P256, P384, P521") falseHost = flag.String("false-host", "", "(Optional) Generate a false cert for this host; used to test x.509 implementations for safety regarding handling of the CA flag and KeyUsage") useCA = flag.Bool("use-ca", false, "Use a CA instead of self-signing") parentKey = flag.String("parent-key", "", "(Optional) Path to existing CA private key to sign with") ) func publicKey(priv interface{}) interface{} { switch k := priv.(type) { case *rsa.PrivateKey: return &k.PublicKey case *ecdsa.PrivateKey: return &k.PublicKey default: return nil } } func pemBlockForKey(priv interface{}) *pem.Block { switch k := priv.(type) { case *rsa.PrivateKey: return &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(k)} case *ecdsa.PrivateKey: b, err := x509.MarshalECPrivateKey(k) if err != nil { fmt.Fprintf(os.Stderr, "Unable to marshal ECDSA private key: %v", err) os.Exit(2) } return &pem.Block{Type: "EC PRIVATE KEY", Bytes: b} default: return nil } } func main() { flag.Parse() if len(*host) == 0 { log.Fatalf("Missing required --host parameter") } var priv interface{} var err error switch *ecdsaCurve { case "": //priv, err = rsa.GenerateKey(rand.Reader, *rsaBits) log.Fatalf("Missing required --ecdsa-curve parameter") case "P224": // nolint: goconst priv, err = ecdsa.GenerateKey(elliptic.P224(), rand.Reader) case "P256": // nolint: goconst priv, err = ecdsa.GenerateKey(elliptic.P256(), rand.Reader) case "P384": // nolint: goconst priv, err = ecdsa.GenerateKey(elliptic.P384(), rand.Reader) case "P521": // nolint: goconst priv, err = ecdsa.GenerateKey(elliptic.P521(), rand.Reader) default: fmt.Fprintf(os.Stderr, "Unrecognized elliptic curve: %q", *ecdsaCurve) os.Exit(1) } if err != nil { log.Fatalf("failed to generate private key: %s", err) } var notBefore time.Time if len(*validFrom) == 0 { notBefore = time.Now() } else { notBefore, err = time.Parse("Jan 2 15:04:05 2006", *validFrom) if err != nil { fmt.Fprintf(os.Stderr, "Failed to parse creation date: %s\n", err) os.Exit(1) } } notAfter := notBefore.Add(*validFor) timestampPrecision := int64(5 * 60) notBeforeFloored := time.Unix((notBefore.Unix()/timestampPrecision)*timestampPrecision, 0) notAfterFloored := time.Unix((notAfter.Unix()/timestampPrecision)*timestampPrecision, 0) //serialNumberLimit := new(big.Int).Lsh(big.NewInt(1), 128) //serialNumber, err := rand.Int(rand.Reader, serialNumberLimit) // Serial components pubkeyBytes, err := x509.MarshalPKIXPublicKey(publicKey(priv)) if err != nil { log.Fatalf("failed to marshal public key: %s", err) } pubkeyB64 := base64.StdEncoding.EncodeToString(pubkeyBytes) notBeforeScaled := notBeforeFloored.Unix() / timestampPrecision notAfterScaled := notAfterFloored.Unix() / timestampPrecision // Calculate serial serialDehydrated := certdehydrate.DehydratedCertificate{ PubkeyB64: pubkeyB64, NotBeforeScaled: notBeforeScaled, NotAfterScaled: notAfterScaled, } serialNumber := big.NewInt(1) serialNumberBytes, err := serialDehydrated.SerialNumber(*host) if err != nil { log.Fatalf("failed to generate serial number: %s", err) } serialNumber.SetBytes(serialNumberBytes) template := x509.Certificate{ SerialNumber: serialNumber, Subject: pkix.Name{ //Organization: []string{"Acme Co"}, CommonName: *host, SerialNumber: "Namecoin TLS Certificate", }, //NotBefore: notBefore, NotBefore: notBeforeFloored, //NotAfter: notAfter, NotAfter: notAfterFloored, // x509.KeyUsageKeyEncipherment is used for RSA key exchange, // but not DHE/ECDHE key exchange. Since everyone should be // using ECDHE (due to forward secrecy), we disallow // x509.KeyUsageKeyEncipherment in our template. //KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature, KeyUsage: x509.KeyUsageDigitalSignature, ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth}, BasicConstraintsValid: true, } //hosts := strings.Split(*host, ",") //for _, h := range hosts { // if ip := net.ParseIP(h); ip != nil { // template.IPAddresses = append(template.IPAddresses, ip) // } else { // template.DNSNames = append(template.DNSNames, h) template.DNSNames = append(template.DNSNames, *host) // } //} //if *isCA { // template.IsCA = true // template.KeyUsage |= x509.KeyUsageCertSign //} var parent x509.Certificate var parentPriv interface{} if *useCA { parent, parentPriv = getParent() } else { parent, parentPriv = template, priv } //derBytes, err := x509.CreateCertificate(rand.Reader, &template, &template, publicKey(priv), priv) derBytes, err := x509.CreateCertificate(rand.Reader, &template, &parent, publicKey(priv), parentPriv) if err != nil { log.Fatalf("Failed to create certificate: %s", err) } certOut, err := os.Create("cert.pem") if err != nil { log.Fatalf("failed to open cert.pem for writing: %s", err) } pem.Encode(certOut, &pem.Block{Type: "CERTIFICATE", Bytes: derBytes}) certOut.Close() log.Print("written cert.pem\n") keyOut, err := os.OpenFile("key.pem", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600) if err != nil { log.Print("failed to open key.pem for writing:", err) return } pem.Encode(keyOut, pemBlockForKey(priv)) keyOut.Close() log.Print("written key.pem\n") if *useCA { log.Print("SUCCESS. Place cert.pem and key.pem in your HTTPS server, and place the above JSON in the \"tls\" field for your Namecoin name.") return } parsedResult, err := x509.ParseCertificate(derBytes) if err != nil { log.Fatal("failed to parse output cert: ", err) } dehydrated, err := certdehydrate.DehydrateCert(parsedResult) if err != nil { log.Fatal("failed to dehydrate result cert: ", err) } rehydrated, err := certdehydrate.RehydrateCert(dehydrated) if err != nil { log.Fatal("failed to rehydrate result cert: ", err) } rehydratedDerBytes, err := certdehydrate.FillRehydratedCertTemplate(*rehydrated, *host) if err != nil { log.Fatal("failed to fill rehydrated result cert: ", err) } if !bytes.Equal(derBytes, rehydratedDerBytes) { log.Fatal("ERROR: The cert did not rehydrate to an identical form. This is a bug; do not use the generated certificate.") } log.Print("Your Namecoin cert is: {\"d8\":", dehydrated, "}") log.Print("SUCCESS: The cert rehydrated to an identical form. Place the generated files in your HTTPS server, and place the above JSON in the \"tls\" field for your Namecoin name.") if len(*falseHost) > 0 { doFalseHost(template, priv) } }