You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lnav/src/third-party/base64/lib/arch/neon64/dec_loop.c

130 lines
5.1 KiB
C

// The input consists of five valid character sets in the Base64 alphabet,
// which we need to map back to the 6-bit values they represent.
// There are three ranges, two singles, and then there's the rest.
//
// # From To LUT Characters
// 1 [0..42] [255] #1 invalid input
// 2 [43] [62] #1 +
// 3 [44..46] [255] #1 invalid input
// 4 [47] [63] #1 /
// 5 [48..57] [52..61] #1 0..9
// 6 [58..63] [255] #1 invalid input
// 7 [64] [255] #2 invalid input
// 8 [65..90] [0..25] #2 A..Z
// 9 [91..96] [255] #2 invalid input
// 10 [97..122] [26..51] #2 a..z
// 11 [123..126] [255] #2 invalid input
// (12) Everything else => invalid input
// The first LUT will use the VTBL instruction (out of range indices are set to
// 0 in destination).
static const uint8_t dec_lut1[] = {
255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U,
255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U,
255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 62U, 255U, 255U, 255U, 63U,
52U, 53U, 54U, 55U, 56U, 57U, 58U, 59U, 60U, 61U, 255U, 255U, 255U, 255U, 255U, 255U,
};
// The second LUT will use the VTBX instruction (out of range indices will be
// unchanged in destination). Input [64..126] will be mapped to index [1..63]
// in this LUT. Index 0 means that value comes from LUT #1.
static const uint8_t dec_lut2[] = {
0U, 255U, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U, 13U,
14U, 15U, 16U, 17U, 18U, 19U, 20U, 21U, 22U, 23U, 24U, 25U, 255U, 255U, 255U, 255U,
255U, 255U, 26U, 27U, 28U, 29U, 30U, 31U, 32U, 33U, 34U, 35U, 36U, 37U, 38U, 39U,
40U, 41U, 42U, 43U, 44U, 45U, 46U, 47U, 48U, 49U, 50U, 51U, 255U, 255U, 255U, 255U,
};
// All input values in range for the first look-up will be 0U in the second
// look-up result. All input values out of range for the first look-up will be
// 0U in the first look-up result. Thus, the two results can be ORed without
// conflicts.
//
// Invalid characters that are in the valid range for either look-up will be
// set to 255U in the combined result. Other invalid characters will just be
// passed through with the second look-up result (using the VTBX instruction).
// Since the second LUT is 64 bytes, those passed-through values are guaranteed
// to have a value greater than 63U. Therefore, valid characters will be mapped
// to the valid [0..63] range and all invalid characters will be mapped to
// values greater than 63.
static inline void
dec_loop_neon64 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
if (*slen < 64) {
return;
}
// Process blocks of 64 bytes per round. Unlike the SSE codecs, no
// extra trailing zero bytes are written, so it is not necessary to
// reserve extra input bytes:
size_t rounds = *slen / 64;
*slen -= rounds * 64; // 64 bytes consumed per round
*olen += rounds * 48; // 48 bytes produced per round
const uint8x16x4_t tbl_dec1 = load_64byte_table(dec_lut1);
const uint8x16x4_t tbl_dec2 = load_64byte_table(dec_lut2);
do {
const uint8x16_t offset = vdupq_n_u8(63U);
uint8x16x4_t dec1, dec2;
uint8x16x3_t dec;
// Load 64 bytes and deinterleave:
uint8x16x4_t str = vld4q_u8((uint8_t *) *s);
// Get indices for second LUT:
dec2.val[0] = vqsubq_u8(str.val[0], offset);
dec2.val[1] = vqsubq_u8(str.val[1], offset);
dec2.val[2] = vqsubq_u8(str.val[2], offset);
dec2.val[3] = vqsubq_u8(str.val[3], offset);
// Get values from first LUT:
dec1.val[0] = vqtbl4q_u8(tbl_dec1, str.val[0]);
dec1.val[1] = vqtbl4q_u8(tbl_dec1, str.val[1]);
dec1.val[2] = vqtbl4q_u8(tbl_dec1, str.val[2]);
dec1.val[3] = vqtbl4q_u8(tbl_dec1, str.val[3]);
// Get values from second LUT:
dec2.val[0] = vqtbx4q_u8(dec2.val[0], tbl_dec2, dec2.val[0]);
dec2.val[1] = vqtbx4q_u8(dec2.val[1], tbl_dec2, dec2.val[1]);
dec2.val[2] = vqtbx4q_u8(dec2.val[2], tbl_dec2, dec2.val[2]);
dec2.val[3] = vqtbx4q_u8(dec2.val[3], tbl_dec2, dec2.val[3]);
// Get final values:
str.val[0] = vorrq_u8(dec1.val[0], dec2.val[0]);
str.val[1] = vorrq_u8(dec1.val[1], dec2.val[1]);
str.val[2] = vorrq_u8(dec1.val[2], dec2.val[2]);
str.val[3] = vorrq_u8(dec1.val[3], dec2.val[3]);
// Check for invalid input, any value larger than 63:
const uint8x16_t classified
= vcgtq_u8(str.val[0], vdupq_n_u8(63))
| vcgtq_u8(str.val[1], vdupq_n_u8(63))
| vcgtq_u8(str.val[2], vdupq_n_u8(63))
| vcgtq_u8(str.val[3], vdupq_n_u8(63));
// Check that all bits are zero:
if (vmaxvq_u8(classified) != 0U) {
break;
}
// Compress four bytes into three:
dec.val[0] = vshlq_n_u8(str.val[0], 2) | vshrq_n_u8(str.val[1], 4);
dec.val[1] = vshlq_n_u8(str.val[1], 4) | vshrq_n_u8(str.val[2], 2);
dec.val[2] = vshlq_n_u8(str.val[2], 6) | str.val[3];
// Interleave and store decoded result:
vst3q_u8((uint8_t *) *o, dec);
*s += 64;
*o += 48;
} while (--rounds > 0);
// Adjust for any rounds that were skipped:
*slen += rounds * 64;
*olen -= rounds * 48;
}