You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
langchain/libs/community/langchain_community/callbacks/uptrain_callback.py

382 lines
14 KiB
Python

"""
UpTrain Callback Handler
UpTrain is an open-source platform to evaluate and improve LLM applications. It provides
grades for 20+ preconfigured checks (covering language, code, embedding use cases),
performs root cause analyses on instances of failure cases and provides guidance for
resolving them.
This module contains a callback handler for integrating UpTrain seamlessly into your
pipeline and facilitating diverse evaluations. The callback handler automates various
evaluations to assess the performance and effectiveness of the components within the
pipeline.
The evaluations conducted include:
1. RAG:
- Context Relevance: Determines the relevance of the context extracted from the query
to the response.
- Factual Accuracy: Assesses if the Language Model (LLM) is providing accurate
information or hallucinating.
- Response Completeness: Checks if the response contains all the information
requested by the query.
2. Multi Query Generation:
MultiQueryRetriever generates multiple variants of a question with similar meanings
to the original question. This evaluation includes previous assessments and adds:
- Multi Query Accuracy: Ensures that the multi-queries generated convey the same
meaning as the original query.
3. Context Compression and Reranking:
Re-ranking involves reordering nodes based on relevance to the query and selecting
top n nodes.
Due to the potential reduction in the number of nodes after re-ranking, the following
evaluations
are performed in addition to the RAG evaluations:
- Context Reranking: Determines if the order of re-ranked nodes is more relevant to
the query than the original order.
- Context Conciseness: Examines whether the reduced number of nodes still provides
all the required information.
These evaluations collectively ensure the robustness and effectiveness of the RAG query
engine, MultiQueryRetriever, and the re-ranking process within the pipeline.
Useful links:
Github: https://github.com/uptrain-ai/uptrain
Website: https://uptrain.ai/
Docs: https://docs.uptrain.ai/getting-started/introduction
"""
import logging
import sys
from collections import defaultdict
from typing import (
Any,
DefaultDict,
Dict,
List,
Optional,
Sequence,
Set,
)
from uuid import UUID
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_core.documents import Document
from langchain_core.outputs import LLMResult
from langchain_core.utils import guard_import
logger = logging.getLogger(__name__)
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
def import_uptrain() -> Any:
"""Import the `uptrain` package."""
return guard_import("uptrain")
class UpTrainDataSchema:
"""The UpTrain data schema for tracking evaluation results.
Args:
project_name_prefix (str): Prefix for the project name.
Attributes:
project_name_prefix (str): Prefix for the project name.
uptrain_results (DefaultDict[str, Any]): Dictionary to store evaluation results.
eval_types (Set[str]): Set to store the types of evaluations.
query (str): Query for the RAG evaluation.
context (str): Context for the RAG evaluation.
response (str): Response for the RAG evaluation.
old_context (List[str]): Old context nodes for Context Conciseness evaluation.
new_context (List[str]): New context nodes for Context Conciseness evaluation.
context_conciseness_run_id (str): Run ID for Context Conciseness evaluation.
multi_queries (List[str]): List of multi queries for Multi Query evaluation.
multi_query_run_id (str): Run ID for Multi Query evaluation.
multi_query_daugher_run_id (str): Run ID for Multi Query daughter evaluation.
"""
def __init__(self, project_name_prefix: str) -> None:
"""Initialize the UpTrain data schema."""
# For tracking project name and results
self.project_name_prefix: str = project_name_prefix
self.uptrain_results: DefaultDict[str, Any] = defaultdict(list)
# For tracking event types
self.eval_types: Set[str] = set()
## RAG
self.query: str = ""
self.context: str = ""
self.response: str = ""
## CONTEXT CONCISENESS
self.old_context: List[str] = []
self.new_context: List[str] = []
self.context_conciseness_run_id: UUID = UUID(int=0)
# MULTI QUERY
self.multi_queries: List[str] = []
self.multi_query_run_id: UUID = UUID(int=0)
self.multi_query_daugher_run_id: UUID = UUID(int=0)
class UpTrainCallbackHandler(BaseCallbackHandler):
"""Callback Handler that logs evaluation results to uptrain and the console.
Args:
project_name_prefix (str): Prefix for the project name.
key_type (str): Type of key to use. Must be 'uptrain' or 'openai'.
api_key (str): API key for the UpTrain or OpenAI API.
(This key is required to perform evaluations using GPT.)
Raises:
ValueError: If the key type is invalid.
ImportError: If the `uptrain` package is not installed.
"""
def __init__(
self,
*,
project_name_prefix: str = "langchain",
key_type: str = "openai",
api_key: str = "sk-****************", # The API key to use for evaluation
model: str = "gpt-3.5-turbo", # The model to use for evaluation
log_results: bool = True,
) -> None:
"""Initializes the `UpTrainCallbackHandler`."""
super().__init__()
uptrain = import_uptrain()
self.log_results = log_results
# Set uptrain variables
self.schema = UpTrainDataSchema(project_name_prefix=project_name_prefix)
self.first_score_printed_flag = False
if key_type == "uptrain":
settings = uptrain.Settings(uptrain_access_token=api_key, model=model)
self.uptrain_client = uptrain.APIClient(settings=settings)
elif key_type == "openai":
settings = uptrain.Settings(
openai_api_key=api_key, evaluate_locally=False, model=model
)
self.uptrain_client = uptrain.EvalLLM(settings=settings)
else:
raise ValueError("Invalid key type: Must be 'uptrain' or 'openai'")
def uptrain_evaluate(
self,
project_name: str,
data: List[Dict[str, Any]],
checks: List[str],
) -> None:
"""Run an evaluation on the UpTrain server using UpTrain client."""
if self.uptrain_client.__class__.__name__ == "APIClient":
uptrain_result = self.uptrain_client.log_and_evaluate(
project_name=project_name,
data=data,
checks=checks,
)
else:
uptrain_result = self.uptrain_client.evaluate(
data=data,
checks=checks,
)
self.schema.uptrain_results[project_name].append(uptrain_result)
score_name_map = {
"score_context_relevance": "Context Relevance Score",
"score_factual_accuracy": "Factual Accuracy Score",
"score_response_completeness": "Response Completeness Score",
"score_sub_query_completeness": "Sub Query Completeness Score",
"score_context_reranking": "Context Reranking Score",
"score_context_conciseness": "Context Conciseness Score",
"score_multi_query_accuracy": "Multi Query Accuracy Score",
}
if self.log_results:
# Set logger level to INFO to print the evaluation results
logger.setLevel(logging.INFO)
for row in uptrain_result:
columns = list(row.keys())
for column in columns:
if column == "question":
logger.info(f"\nQuestion: {row[column]}")
self.first_score_printed_flag = False
elif column == "response":
logger.info(f"Response: {row[column]}")
self.first_score_printed_flag = False
elif column == "variants":
logger.info("Multi Queries:")
for variant in row[column]:
logger.info(f" - {variant}")
self.first_score_printed_flag = False
elif column.startswith("score"):
if not self.first_score_printed_flag:
logger.info("")
self.first_score_printed_flag = True
if column in score_name_map:
logger.info(f"{score_name_map[column]}: {row[column]}")
else:
logger.info(f"{column}: {row[column]}")
if self.log_results:
# Set logger level back to WARNING
# (We are doing this to avoid printing the logs from HTTP requests)
logger.setLevel(logging.WARNING)
def on_llm_end(
self,
response: LLMResult,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> None:
"""Log records to uptrain when an LLM ends."""
uptrain = import_uptrain()
self.schema.response = response.generations[0][0].text
if (
"qa_rag" in self.schema.eval_types
and parent_run_id != self.schema.multi_query_daugher_run_id
):
data = [
{
"question": self.schema.query,
"context": self.schema.context,
"response": self.schema.response,
}
]
self.uptrain_evaluate(
project_name=f"{self.schema.project_name_prefix}_rag",
data=data,
checks=[
uptrain.Evals.CONTEXT_RELEVANCE,
uptrain.Evals.FACTUAL_ACCURACY,
uptrain.Evals.RESPONSE_COMPLETENESS,
],
)
def on_chain_start(
self,
serialized: Dict[str, Any],
inputs: Dict[str, Any],
*,
run_id: UUID,
tags: Optional[List[str]] = None,
parent_run_id: Optional[UUID] = None,
metadata: Optional[Dict[str, Any]] = None,
run_type: Optional[str] = None,
name: Optional[str] = None,
**kwargs: Any,
) -> None:
"""Do nothing when chain starts"""
if parent_run_id == self.schema.multi_query_run_id:
self.schema.multi_query_daugher_run_id = run_id
if isinstance(inputs, dict) and set(inputs.keys()) == {"context", "question"}:
self.schema.eval_types.add("qa_rag")
context = ""
if isinstance(inputs["context"], Document):
context = inputs["context"].page_content
elif isinstance(inputs["context"], list):
for doc in inputs["context"]:
context += doc.page_content + "\n"
elif isinstance(inputs["context"], str):
context = inputs["context"]
self.schema.context = context
self.schema.query = inputs["question"]
pass
def on_retriever_start(
self,
serialized: Dict[str, Any],
query: str,
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> None:
if "contextual_compression" in serialized["id"]:
self.schema.eval_types.add("contextual_compression")
self.schema.query = query
self.schema.context_conciseness_run_id = run_id
if "multi_query" in serialized["id"]:
self.schema.eval_types.add("multi_query")
self.schema.multi_query_run_id = run_id
self.schema.query = query
elif "multi_query" in self.schema.eval_types:
self.schema.multi_queries.append(query)
def on_retriever_end(
self,
documents: Sequence[Document],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
**kwargs: Any,
) -> Any:
"""Run when Retriever ends running."""
uptrain = import_uptrain()
if run_id == self.schema.multi_query_run_id:
data = [
{
"question": self.schema.query,
"variants": self.schema.multi_queries,
}
]
self.uptrain_evaluate(
project_name=f"{self.schema.project_name_prefix}_multi_query",
data=data,
checks=[uptrain.Evals.MULTI_QUERY_ACCURACY],
)
if "contextual_compression" in self.schema.eval_types:
if parent_run_id == self.schema.context_conciseness_run_id:
for doc in documents:
self.schema.old_context.append(doc.page_content)
elif run_id == self.schema.context_conciseness_run_id:
for doc in documents:
self.schema.new_context.append(doc.page_content)
context = "\n".join(
[
f"{index}. {string}"
for index, string in enumerate(self.schema.old_context, start=1)
]
)
reranked_context = "\n".join(
[
f"{index}. {string}"
for index, string in enumerate(self.schema.new_context, start=1)
]
)
data = [
{
"question": self.schema.query,
"context": context,
"concise_context": reranked_context,
"reranked_context": reranked_context,
}
]
self.uptrain_evaluate(
project_name=f"{self.schema.project_name_prefix}_context_reranking",
data=data,
checks=[
uptrain.Evals.CONTEXT_CONCISENESS,
uptrain.Evals.CONTEXT_RERANKING,
],
)