Merge branch 'master' into master

pull/19953/head
Anwaar Khalid 2 weeks ago committed by GitHub
commit 813e722ac9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -12,7 +12,7 @@
// The optional 'workspaceFolder' property is the path VS Code should open by default when
// connected. This is typically a file mount in .devcontainer/docker-compose.yml
"workspaceFolder": "/workspaces/${localWorkspaceFolderBasename}",
"workspaceFolder": "/workspaces/langchain",
// Prevent the container from shutting down
"overrideCommand": true

@ -6,7 +6,7 @@ services:
context: ..
volumes:
# Update this to wherever you want VS Code to mount the folder of your project
- ..:/workspaces:cached
- ..:/workspaces/langchain:cached
networks:
- langchain-network
# environment:

@ -6,8 +6,8 @@ from typing import Dict
LANGCHAIN_DIRS = [
"libs/core",
"libs/text-splitters",
"libs/community",
"libs/langchain",
"libs/community",
"libs/experimental",
]
@ -19,6 +19,7 @@ if __name__ == "__main__":
"test": set(),
"extended-test": set(),
}
docs_edited = False
if len(files) == 300:
# max diff length is 300 files - there are likely files missing
@ -47,6 +48,17 @@ if __name__ == "__main__":
found = True
if found:
dirs_to_run["extended-test"].add(dir_)
elif file.startswith("libs/standard-tests"):
# TODO: update to include all packages that rely on standard-tests (all partner packages)
# note: won't run on external repo partners
dirs_to_run["lint"].add("libs/standard-tests")
dirs_to_run["test"].add("libs/partners/mistralai")
dirs_to_run["test"].add("libs/partners/openai")
dirs_to_run["test"].add("libs/partners/anthropic")
dirs_to_run["test"].add("libs/partners/ai21")
dirs_to_run["test"].add("libs/partners/fireworks")
dirs_to_run["test"].add("libs/partners/groq")
elif file.startswith("libs/cli"):
# todo: add cli makefile
pass
@ -65,6 +77,8 @@ if __name__ == "__main__":
"an update for this new library!"
)
elif any(file.startswith(p) for p in ["docs/", "templates/", "cookbook/"]):
if file.startswith("docs/"):
docs_edited = True
dirs_to_run["lint"].add(".")
outputs = {
@ -73,6 +87,7 @@ if __name__ == "__main__":
),
"dirs-to-test": list(dirs_to_run["test"] | dirs_to_run["extended-test"]),
"dirs-to-extended-test": list(dirs_to_run["extended-test"]),
"docs-edited": "true" if docs_edited else "",
}
for key, value in outputs.items():
json_output = json.dumps(value)

@ -13,13 +13,16 @@ MIN_VERSION_LIBS = [
def get_min_version(version: str) -> str:
# base regex for x.x.x with cases for rc/post/etc
# valid strings: https://peps.python.org/pep-0440/#public-version-identifiers
vstring = r"\d+(?:\.\d+){0,2}(?:(?:a|b|rc|\.post|\.dev)\d+)?"
# case ^x.x.x
_match = re.match(r"^\^(\d+(?:\.\d+){0,2})$", version)
_match = re.match(f"^\\^({vstring})$", version)
if _match:
return _match.group(1)
# case >=x.x.x,<y.y.y
_match = re.match(r"^>=(\d+(?:\.\d+){0,2}),<(\d+(?:\.\d+){0,2})$", version)
_match = re.match(f"^>=({vstring}),<({vstring})$", version)
if _match:
_min = _match.group(1)
_max = _match.group(2)
@ -27,7 +30,7 @@ def get_min_version(version: str) -> str:
return _min
# case x.x.x
_match = re.match(r"^(\d+(?:\.\d+){0,2})$", version)
_match = re.match(f"^({vstring})$", version)
if _match:
return _match.group(1)
@ -52,6 +55,9 @@ def get_min_version_from_toml(toml_path: str):
# Get the version string
version_string = dependencies[lib]
if isinstance(version_string, dict):
version_string = version_string["version"]
# Use parse_version to get the minimum supported version from version_string
min_version = get_min_version(version_string)

@ -58,6 +58,7 @@ jobs:
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }}
GOOGLE_SEARCH_API_KEY: ${{ secrets.GOOGLE_SEARCH_API_KEY }}
GOOGLE_CSE_ID: ${{ secrets.GOOGLE_CSE_ID }}
@ -78,6 +79,7 @@ jobs:
UNIFY_API_KEY: ${{ secrets.UNIFY_API_KEY }}
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
run: |
make integration_tests

@ -13,6 +13,11 @@ on:
required: true
type: string
default: 'libs/langchain'
dangerous-nonmaster-release:
required: false
type: boolean
default: false
description: "Release from a non-master branch (danger!)"
env:
PYTHON_VERSION: "3.11"
@ -20,7 +25,7 @@ env:
jobs:
build:
if: github.ref == 'refs/heads/master'
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
environment: Scheduled testing
runs-on: ubuntu-latest
@ -75,6 +80,7 @@ jobs:
./.github/workflows/_test_release.yml
with:
working-directory: ${{ inputs.working-directory }}
dangerous-nonmaster-release: ${{ inputs.dangerous-nonmaster-release }}
secrets: inherit
pre-release-checks:
@ -112,7 +118,7 @@ jobs:
PKG_NAME: ${{ needs.build.outputs.pkg-name }}
VERSION: ${{ needs.build.outputs.version }}
# Here we use:
# - The default regular PyPI index as the *primary* index, meaning
# - The default regular PyPI index as the *primary* index, meaning
# that it takes priority (https://pypi.org/simple)
# - The test PyPI index as an extra index, so that any dependencies that
# are not found on test PyPI can be resolved and installed anyway.
@ -171,7 +177,7 @@ jobs:
env:
MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }}
run: |
poetry run pip install $MIN_VERSIONS
poetry run pip install --force-reinstall $MIN_VERSIONS --editable .
make tests
working-directory: ${{ inputs.working-directory }}
@ -216,7 +222,8 @@ jobs:
MONGODB_ATLAS_URI: ${{ secrets.MONGODB_ATLAS_URI }}
UNIFY_API_KEY: ${{ secrets.UNIFY_API_KEY }}
VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }}
COHERE_API_KEY: ${{ secrets.COHERE_API_KEY }}
UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
run: make integration_tests
working-directory: ${{ inputs.working-directory }}
@ -292,14 +299,13 @@ jobs:
with:
name: dist
path: ${{ inputs.working-directory }}/dist/
- name: Create Release
- name: Create Tag
uses: ncipollo/release-action@v1
if: ${{ inputs.working-directory == 'libs/langchain' }}
with:
artifacts: "dist/*"
token: ${{ secrets.GITHUB_TOKEN }}
draft: false
generateReleaseNotes: true
tag: v${{ needs.build.outputs.version }}
commit: master
generateReleaseNotes: false
tag: ${{needs.build.outputs.pkg-name}}==${{ needs.build.outputs.version }}
body: "# Release ${{needs.build.outputs.pkg-name}}==${{ needs.build.outputs.version }}\n\nPackage-specific release note generation coming soon."
commit: ${{ github.sha }}

@ -7,6 +7,11 @@ on:
required: true
type: string
description: "From which folder this pipeline executes"
dangerous-nonmaster-release:
required: false
type: boolean
default: false
description: "Release from a non-master branch (danger!)"
env:
POETRY_VERSION: "1.7.1"
@ -14,7 +19,7 @@ env:
jobs:
build:
if: github.ref == 'refs/heads/master'
if: github.ref == 'refs/heads/master' || inputs.dangerous-nonmaster-release
runs-on: ubuntu-latest
outputs:

@ -36,6 +36,7 @@ jobs:
dirs-to-lint: ${{ steps.set-matrix.outputs.dirs-to-lint }}
dirs-to-test: ${{ steps.set-matrix.outputs.dirs-to-test }}
dirs-to-extended-test: ${{ steps.set-matrix.outputs.dirs-to-extended-test }}
docs-edited: ${{ steps.set-matrix.outputs.docs-edited }}
lint:
name: cd ${{ matrix.working-directory }}
needs: [ build ]
@ -60,9 +61,9 @@ jobs:
working-directory: ${{ matrix.working-directory }}
secrets: inherit
test_doc_imports:
test-doc-imports:
needs: [ build ]
if: ${{ needs.build.outputs.dirs-to-test != '[]' }}
if: ${{ needs.build.outputs.dirs-to-test != '[]' || needs.build.outputs.docs-edited }}
uses: ./.github/workflows/_test_doc_imports.yml
secrets: inherit
@ -140,7 +141,7 @@ jobs:
echo "$STATUS" | grep 'nothing to commit, working tree clean'
ci_success:
name: "CI Success"
needs: [build, lint, test, compile-integration-tests, dependencies, extended-tests]
needs: [build, lint, test, compile-integration-tests, dependencies, extended-tests, test-doc-imports]
if: |
always()
runs-on: ubuntu-latest

@ -3,9 +3,9 @@ name: CI / cd . / make spell_check
on:
push:
branches: [master]
branches: [master, v0.1]
pull_request:
branches: [master]
branches: [master, v0.1]
permissions:
contents: read

@ -10,19 +10,22 @@ env:
jobs:
build:
defaults:
run:
working-directory: libs/langchain
runs-on: ubuntu-latest
environment: Scheduled testing
strategy:
fail-fast: false
matrix:
python-version:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
name: Python ${{ matrix.python-version }}
working-directory:
- "libs/partners/openai"
- "libs/partners/anthropic"
- "libs/partners/ai21"
- "libs/partners/fireworks"
- "libs/partners/groq"
- "libs/partners/mistralai"
- "libs/partners/together"
name: Python ${{ matrix.python-version }} - ${{ matrix.working-directory }}
steps:
- uses: actions/checkout@v4
@ -31,7 +34,7 @@ jobs:
with:
python-version: ${{ matrix.python-version }}
poetry-version: ${{ env.POETRY_VERSION }}
working-directory: libs/langchain
working-directory: ${{ matrix.working-directory }}
cache-key: scheduled
- name: 'Authenticate to Google Cloud'
@ -40,26 +43,15 @@ jobs:
with:
credentials_json: '${{ secrets.GOOGLE_CREDENTIALS }}'
- name: Configure AWS Credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ vars.AWS_REGION }}
- name: Install dependencies
working-directory: libs/langchain
working-directory: ${{ matrix.working-directory }}
shell: bash
run: |
echo "Running scheduled tests, installing dependencies with poetry..."
poetry install --with=test_integration,test
- name: Install deps outside pyproject
if: ${{ startsWith(inputs.working-directory, 'libs/community/') }}
shell: bash
run: poetry run pip install "boto3<2" "google-cloud-aiplatform<2"
- name: Run tests
- name: Run integration tests
working-directory: ${{ matrix.working-directory }}
shell: bash
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
@ -70,11 +62,16 @@ jobs:
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }}
AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }}
AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }}
AI21_API_KEY: ${{ secrets.AI21_API_KEY }}
FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }}
GROQ_API_KEY: ${{ secrets.GROQ_API_KEY }}
MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }}
TOGETHER_API_KEY: ${{ secrets.TOGETHER_API_KEY }}
run: |
make scheduled_tests
make integration_test
- name: Ensure the tests did not create any additional files
working-directory: ${{ matrix.working-directory }}
shell: bash
run: |
set -eu

@ -3,7 +3,7 @@
## help: Show this help info.
help: Makefile
@printf "\n\033[1mUsage: make <TARGETS> ...\033[0m\n\n\033[1mTargets:\033[0m\n\n"
@sed -n 's/^##//p' $< | awk -F':' '{printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' | sort | sed -e 's/^/ /'
@sed -n 's/^## //p' $< | awk -F':' '{printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}' | sort | sed -e 's/^/ /'
## all: Default target, shows help.
all: help
@ -17,16 +17,11 @@ clean: docs_clean api_docs_clean
## docs_build: Build the documentation.
docs_build:
docs/.local_build.sh
cd docs && make build
## docs_clean: Clean the documentation build artifacts.
docs_clean:
@if [ -d _dist ]; then \
rm -r _dist; \
echo "Directory _dist has been cleaned."; \
else \
echo "Nothing to clean."; \
fi
cd docs && make clean
## docs_linkcheck: Run linkchecker on the documentation.
docs_linkcheck:
@ -60,12 +55,12 @@ spell_fix:
## lint: Run linting on the project.
lint lint_package lint_tests:
poetry run ruff docs templates cookbook
poetry run ruff check docs templates cookbook
poetry run ruff format docs templates cookbook --diff
poetry run ruff --select I docs templates cookbook
poetry run ruff check --select I docs templates cookbook
git grep 'from langchain import' docs/docs templates cookbook | grep -vE 'from langchain import (hub)' && exit 1 || exit 0
## format: Format the project files.
format format_diff:
poetry run ruff format docs templates cookbook
poetry run ruff --select I --fix docs templates cookbook
poetry run ruff check --select I --fix docs templates cookbook

@ -4,7 +4,7 @@
[![Release Notes](https://img.shields.io/github/release/langchain-ai/langchain)](https://github.com/langchain-ai/langchain/releases)
[![CI](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml/badge.svg)](https://github.com/langchain-ai/langchain/actions/workflows/check_diffs.yml)
[![Downloads](https://static.pepy.tech/badge/langchain/month)](https://pepy.tech/project/langchain)
[![Downloads](https://static.pepy.tech/badge/langchain-core/month)](https://pepy.tech/project/langchain-core)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/langchainai.svg?style=social&label=Follow%20%40LangChainAI)](https://twitter.com/langchainai)
[![](https://dcbadge.vercel.app/api/server/6adMQxSpJS?compact=true&style=flat)](https://discord.gg/6adMQxSpJS)
@ -47,7 +47,7 @@ For these applications, LangChain simplifies the entire application lifecycle:
- **`langchain-community`**: Third party integrations.
- Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**.
- **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.
- **`[LangGraph](https://python.langchain.com/docs/langgraph)`**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
- **[`LangGraph`](https://python.langchain.com/docs/langgraph)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
### Productionization:
- **[LangSmith](https://python.langchain.com/docs/langsmith)**: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.

@ -464,8 +464,8 @@
" Check if the base64 data is an image by looking at the start of the data\n",
" \"\"\"\n",
" image_signatures = {\n",
" b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
" b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
" b\"\\xff\\xd8\\xff\": \"jpg\",\n",
" b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
" b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
" b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
" }\n",
@ -604,7 +604,7 @@
"source": [
"# Check retrieval\n",
"query = \"Give me company names that are interesting investments based on EV / NTM and NTM rev growth. Consider EV / NTM multiples vs historical?\"\n",
"docs = retriever_multi_vector_img.get_relevant_documents(query, limit=6)\n",
"docs = retriever_multi_vector_img.invoke(query, limit=6)\n",
"\n",
"# We get 4 docs\n",
"len(docs)"
@ -630,7 +630,7 @@
"source": [
"# Check retrieval\n",
"query = \"What are the EV / NTM and NTM rev growth for MongoDB, Cloudflare, and Datadog?\"\n",
"docs = retriever_multi_vector_img.get_relevant_documents(query, limit=6)\n",
"docs = retriever_multi_vector_img.invoke(query, limit=6)\n",
"\n",
"# We get 4 docs\n",
"len(docs)"

@ -185,7 +185,7 @@
" )\n",
" # Text summary chain\n",
" model = VertexAI(\n",
" temperature=0, model_name=\"gemini-pro\", max_output_tokens=1024\n",
" temperature=0, model_name=\"gemini-pro\", max_tokens=1024\n",
" ).with_fallbacks([empty_response])\n",
" summarize_chain = {\"element\": lambda x: x} | prompt | model | StrOutputParser()\n",
"\n",
@ -254,9 +254,9 @@
"\n",
"def image_summarize(img_base64, prompt):\n",
" \"\"\"Make image summary\"\"\"\n",
" model = ChatVertexAI(model_name=\"gemini-pro-vision\", max_output_tokens=1024)\n",
" model = ChatVertexAI(model=\"gemini-pro-vision\", max_tokens=1024)\n",
"\n",
" msg = model(\n",
" msg = model.invoke(\n",
" [\n",
" HumanMessage(\n",
" content=[\n",
@ -462,8 +462,8 @@
" Check if the base64 data is an image by looking at the start of the data\n",
" \"\"\"\n",
" image_signatures = {\n",
" b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
" b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
" b\"\\xff\\xd8\\xff\": \"jpg\",\n",
" b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
" b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
" b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
" }\n",
@ -553,9 +553,7 @@
" \"\"\"\n",
"\n",
" # Multi-modal LLM\n",
" model = ChatVertexAI(\n",
" temperature=0, model_name=\"gemini-pro-vision\", max_output_tokens=1024\n",
" )\n",
" model = ChatVertexAI(temperature=0, model_name=\"gemini-pro-vision\", max_tokens=1024)\n",
"\n",
" # RAG pipeline\n",
" chain = (\n",
@ -604,7 +602,7 @@
],
"source": [
"query = \"What are the EV / NTM and NTM rev growth for MongoDB, Cloudflare, and Datadog?\"\n",
"docs = retriever_multi_vector_img.get_relevant_documents(query, limit=1)\n",
"docs = retriever_multi_vector_img.invoke(query, limit=1)\n",
"\n",
"# We get 2 docs\n",
"len(docs)"

@ -535,9 +535,9 @@
" print(f\"--Generated {len(all_clusters)} clusters--\")\n",
"\n",
" # Summarization\n",
" template = \"\"\"Here is a sub-set of LangChain Expression Langauge doc. \n",
" template = \"\"\"Here is a sub-set of LangChain Expression Language doc. \n",
" \n",
" LangChain Expression Langauge provides a way to compose chain in LangChain.\n",
" LangChain Expression Language provides a way to compose chain in LangChain.\n",
" \n",
" Give a detailed summary of the documentation provided.\n",
" \n",

@ -47,6 +47,7 @@ Notebook | Description
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
[rag_upstage_layout_analysis_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_layout_analysis_groundedness_check.ipynb) | End-to-end RAG example using Upstage Layout Analysis and Groundedness Check.
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.
@ -56,3 +57,4 @@ Notebook | Description
[two_agent_debate_tools.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_agent_debate_tools.ipynb) | Simulate multi-agent dialogues where the agents can utilize various tools.
[two_player_dnd.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/two_player_dnd.ipynb) | Simulate a two-player dungeons & dragons game, where a dialogue simulator class is used to coordinate the dialogue between the protagonist and the dungeon master.
[wikibase_agent.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/wikibase_agent.ipynb) | Create a simple wikibase agent that utilizes sparql generation, with testing done on http://wikidata.org.
[oracleai_demo.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/oracleai_demo.ipynb) | This guide outlines how to utilize Oracle AI Vector Search alongside Langchain for an end-to-end RAG pipeline, providing step-by-step examples. The process includes loading documents from various sources using OracleDocLoader, summarizing them either within or outside the database with OracleSummary, and generating embeddings similarly through OracleEmbeddings. It also covers chunking documents according to specific requirements using Advanced Oracle Capabilities from OracleTextSplitter, and finally, storing and indexing these documents in a Vector Store for querying with OracleVS.

@ -75,7 +75,7 @@
"\n",
"Apply to the [`LLaMA2`](https://arxiv.org/pdf/2307.09288.pdf) paper. \n",
"\n",
"We use the Unstructured [`partition_pdf`](https://unstructured-io.github.io/unstructured/bricks/partition.html#partition-pdf), which segments a PDF document by using a layout model. \n",
"We use the Unstructured [`partition_pdf`](https://unstructured-io.github.io/unstructured/core/partition.html#partition-pdf), which segments a PDF document by using a layout model. \n",
"\n",
"This layout model makes it possible to extract elements, such as tables, from pdfs. \n",
"\n",

@ -562,9 +562,7 @@
],
"source": [
"# We can retrieve this table\n",
"retriever.get_relevant_documents(\n",
" \"What are results for LLaMA across across domains / subjects?\"\n",
")[1]"
"retriever.invoke(\"What are results for LLaMA across across domains / subjects?\")[1]"
]
},
{
@ -614,9 +612,7 @@
}
],
"source": [
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
" 1\n",
"]"
"retriever.invoke(\"Images / figures with playful and creative examples\")[1]"
]
},
{

@ -501,9 +501,7 @@
}
],
"source": [
"retriever.get_relevant_documents(\"Images / figures with playful and creative examples\")[\n",
" 0\n",
"]"
"retriever.invoke(\"Images / figures with playful and creative examples\")[0]"
]
},
{

@ -342,7 +342,7 @@
"# Testing on retrieval\n",
"query = \"What percentage of CPI is dedicated to Housing, and how does it compare to the combined percentage of Medical Care, Apparel, and Other Goods and Services?\"\n",
"suffix_for_images = \" Include any pie charts, graphs, or tables.\"\n",
"docs = retriever_multi_vector_img.get_relevant_documents(query + suffix_for_images)"
"docs = retriever_multi_vector_img.invoke(query + suffix_for_images)"
]
},
{
@ -532,8 +532,8 @@
"def is_image_data(b64data):\n",
" \"\"\"Check if the base64 data is an image by looking at the start of the data.\"\"\"\n",
" image_signatures = {\n",
" b\"\\xFF\\xD8\\xFF\": \"jpg\",\n",
" b\"\\x89\\x50\\x4E\\x47\\x0D\\x0A\\x1A\\x0A\": \"png\",\n",
" b\"\\xff\\xd8\\xff\": \"jpg\",\n",
" b\"\\x89\\x50\\x4e\\x47\\x0d\\x0a\\x1a\\x0a\": \"png\",\n",
" b\"\\x47\\x49\\x46\\x38\": \"gif\",\n",
" b\"\\x52\\x49\\x46\\x46\": \"webp\",\n",
" }\n",

File diff suppressed because one or more lines are too long

@ -59,7 +59,7 @@
},
"outputs": [],
"source": [
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=1.0)"
"llm = ChatOpenAI(model=\"gpt-4\", temperature=1.0)"
]
},
{

File diff suppressed because one or more lines are too long

@ -90,7 +90,7 @@
" ) -> AIMessage:\n",
" messages = self.update_messages(input_message)\n",
"\n",
" output_message = self.model(messages)\n",
" output_message = self.model.invoke(messages)\n",
" self.update_messages(output_message)\n",
"\n",
" return output_message"

@ -933,7 +933,7 @@
"**Answer**: The LangChain class includes various types of retrievers such as:\n",
"\n",
"- ArxivRetriever\n",
"- AzureCognitiveSearchRetriever\n",
"- AzureAISearchRetriever\n",
"- BM25Retriever\n",
"- ChaindeskRetriever\n",
"- ChatGPTPluginRetriever\n",
@ -993,7 +993,7 @@
{
"data": {
"text/plain": [
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureCognitiveSearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
"{'question': 'LangChain possesses a variety of retrievers including:\\n\\n1. ArxivRetriever\\n2. AzureAISearchRetriever\\n3. BM25Retriever\\n4. ChaindeskRetriever\\n5. ChatGPTPluginRetriever\\n6. ContextualCompressionRetriever\\n7. DocArrayRetriever\\n8. ElasticSearchBM25Retriever\\n9. EnsembleRetriever\\n10. GoogleVertexAISearchRetriever\\n11. AmazonKendraRetriever\\n12. KNNRetriever\\n13. LlamaIndexGraphRetriever\\n14. LlamaIndexRetriever\\n15. MergerRetriever\\n16. MetalRetriever\\n17. MilvusRetriever\\n18. MultiQueryRetriever\\n19. ParentDocumentRetriever\\n20. PineconeHybridSearchRetriever\\n21. PubMedRetriever\\n22. RePhraseQueryRetriever\\n23. RemoteLangChainRetriever\\n24. SelfQueryRetriever\\n25. SVMRetriever\\n26. TFIDFRetriever\\n27. TimeWeightedVectorStoreRetriever\\n28. VespaRetriever\\n29. WeaviateHybridSearchRetriever\\n30. WebResearchRetriever\\n31. WikipediaRetriever\\n32. ZepRetriever\\n33. ZillizRetriever\\n\\nIt also includes self query translators like:\\n\\n1. ChromaTranslator\\n2. DeepLakeTranslator\\n3. MyScaleTranslator\\n4. PineconeTranslator\\n5. QdrantTranslator\\n6. WeaviateTranslator\\n\\nAnd remote retrievers like:\\n\\n1. RemoteLangChainRetriever'}"
]
},
"execution_count": 31,
@ -1117,7 +1117,7 @@
"The LangChain class includes various types of retrievers such as:\n",
"\n",
"- ArxivRetriever\n",
"- AzureCognitiveSearchRetriever\n",
"- AzureAISearchRetriever\n",
"- BM25Retriever\n",
"- ChaindeskRetriever\n",
"- ChatGPTPluginRetriever\n",

@ -0,0 +1,557 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Environment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Python Modules"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the following Python modules:\n",
"\n",
"```bash\n",
"pip install ipykernel python-dotenv cassio pandas langchain_openai langchain langchain-community langchainhub langchain_experimental openai-multi-tool-use-parallel-patch\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load the `.env` File"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Connection is via `cassio` using `auto=True` parameter, and the notebook uses OpenAI. You should create a `.env` file accordingly.\n",
"\n",
"For Casssandra, set:\n",
"```bash\n",
"CASSANDRA_CONTACT_POINTS\n",
"CASSANDRA_USERNAME\n",
"CASSANDRA_PASSWORD\n",
"CASSANDRA_KEYSPACE\n",
"```\n",
"\n",
"For Astra, set:\n",
"```bash\n",
"ASTRA_DB_APPLICATION_TOKEN\n",
"ASTRA_DB_DATABASE_ID\n",
"ASTRA_DB_KEYSPACE\n",
"```\n",
"\n",
"For example:\n",
"\n",
"```bash\n",
"# Connection to Astra:\n",
"ASTRA_DB_DATABASE_ID=a1b2c3d4-...\n",
"ASTRA_DB_APPLICATION_TOKEN=AstraCS:...\n",
"ASTRA_DB_KEYSPACE=notebooks\n",
"\n",
"# Also set \n",
"OPENAI_API_KEY=sk-....\n",
"```\n",
"\n",
"(You may also modify the below code to directly connect with `cassio`.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv(override=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Connect to Cassandra"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import cassio\n",
"\n",
"cassio.init(auto=True)\n",
"session = cassio.config.resolve_session()\n",
"if not session:\n",
" raise Exception(\n",
" \"Check environment configuration or manually configure cassio connection parameters\"\n",
" )\n",
"\n",
"keyspace = os.environ.get(\n",
" \"ASTRA_DB_KEYSPACE\", os.environ.get(\"CASSANDRA_KEYSPACE\", None)\n",
")\n",
"if not keyspace:\n",
" raise ValueError(\"a KEYSPACE environment variable must be set\")\n",
"\n",
"session.set_keyspace(keyspace)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Database"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This needs to be done one time only!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Download Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The dataset used is from Kaggle, the [Environmental Sensor Telemetry Data](https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k?select=iot_telemetry_data.csv). The next cell will download and unzip the data into a Pandas dataframe. The following cell is instructions to download manually. \n",
"\n",
"The net result of this section is you should have a Pandas dataframe variable `df`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download Automatically"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from io import BytesIO\n",
"from zipfile import ZipFile\n",
"\n",
"import pandas as pd\n",
"import requests\n",
"\n",
"datasetURL = \"https://storage.googleapis.com/kaggle-data-sets/788816/1355729/bundle/archive.zip?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=gcp-kaggle-com%40kaggle-161607.iam.gserviceaccount.com%2F20240404%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240404T115828Z&X-Goog-Expires=259200&X-Goog-SignedHeaders=host&X-Goog-Signature=2849f003b100eb9dcda8dd8535990f51244292f67e4f5fad36f14aa67f2d4297672d8fe6ff5a39f03a29cda051e33e95d36daab5892b8874dcd5a60228df0361fa26bae491dd4371f02dd20306b583a44ba85a4474376188b1f84765147d3b4f05c57345e5de883c2c29653cce1f3755cd8e645c5e952f4fb1c8a735b22f0c811f97f7bce8d0235d0d3731ca8ab4629ff381f3bae9e35fc1b181c1e69a9c7913a5e42d9d52d53e5f716467205af9c8a3cc6746fc5352e8fbc47cd7d18543626bd67996d18c2045c1e475fc136df83df352fa747f1a3bb73e6ba3985840792ec1de407c15836640ec96db111b173bf16115037d53fdfbfd8ac44145d7f9a546aa\"\n",
"\n",
"response = requests.get(datasetURL)\n",
"if response.status_code == 200:\n",
" zip_file = ZipFile(BytesIO(response.content))\n",
" csv_file_name = zip_file.namelist()[0]\n",
"else:\n",
" print(\"Failed to download the file\")\n",
"\n",
"with zip_file.open(csv_file_name) as csv_file:\n",
" df = pd.read_csv(csv_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download Manually"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can download the `.zip` file and unpack the `.csv` contained within. Comment in the next line, and adjust the path to this `.csv` file appropriately."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# df = pd.read_csv(\"/path/to/iot_telemetry_data.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Data into Cassandra"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This section assumes the existence of a dataframe `df`, the following cell validates its structure. The Download section above creates this object."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"assert df is not None, \"Dataframe 'df' must be set\"\n",
"expected_columns = [\n",
" \"ts\",\n",
" \"device\",\n",
" \"co\",\n",
" \"humidity\",\n",
" \"light\",\n",
" \"lpg\",\n",
" \"motion\",\n",
" \"smoke\",\n",
" \"temp\",\n",
"]\n",
"assert all(\n",
" [column in df.columns for column in expected_columns]\n",
"), \"DataFrame does not have the expected columns\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create and load tables:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datetime import UTC, datetime\n",
"\n",
"from cassandra.query import BatchStatement\n",
"\n",
"# Create sensors table\n",
"table_query = \"\"\"\n",
"CREATE TABLE IF NOT EXISTS iot_sensors (\n",
" device text,\n",
" conditions text,\n",
" room text,\n",
" PRIMARY KEY (device)\n",
")\n",
"WITH COMMENT = 'Environmental IoT room sensor metadata.';\n",
"\"\"\"\n",
"session.execute(table_query)\n",
"\n",
"pstmt = session.prepare(\n",
" \"\"\"\n",
"INSERT INTO iot_sensors (device, conditions, room)\n",
"VALUES (?, ?, ?)\n",
"\"\"\"\n",
")\n",
"\n",
"devices = [\n",
" (\"00:0f:00:70:91:0a\", \"stable conditions, cooler and more humid\", \"room 1\"),\n",
" (\"1c:bf:ce:15:ec:4d\", \"highly variable temperature and humidity\", \"room 2\"),\n",
" (\"b8:27:eb:bf:9d:51\", \"stable conditions, warmer and dryer\", \"room 3\"),\n",
"]\n",
"\n",
"for device, conditions, room in devices:\n",
" session.execute(pstmt, (device, conditions, room))\n",
"\n",
"print(\"Sensors inserted successfully.\")\n",
"\n",
"# Create data table\n",
"table_query = \"\"\"\n",
"CREATE TABLE IF NOT EXISTS iot_data (\n",
" day text,\n",
" device text,\n",
" ts timestamp,\n",
" co double,\n",
" humidity double,\n",
" light boolean,\n",
" lpg double,\n",
" motion boolean,\n",
" smoke double,\n",
" temp double,\n",
" PRIMARY KEY ((day, device), ts)\n",
")\n",
"WITH COMMENT = 'Data from environmental IoT room sensors. Columns include device identifier, timestamp (ts) of the data collection, carbon monoxide level (co), relative humidity, light presence, LPG concentration, motion detection, smoke concentration, and temperature (temp). Data is partitioned by day and device.';\n",
"\"\"\"\n",
"session.execute(table_query)\n",
"\n",
"pstmt = session.prepare(\n",
" \"\"\"\n",
"INSERT INTO iot_data (day, device, ts, co, humidity, light, lpg, motion, smoke, temp)\n",
"VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)\n",
"\"\"\"\n",
")\n",
"\n",
"\n",
"def insert_data_batch(name, group):\n",
" batch = BatchStatement()\n",
" day, device = name\n",
" print(f\"Inserting batch for day: {day}, device: {device}\")\n",
"\n",
" for _, row in group.iterrows():\n",
" timestamp = datetime.fromtimestamp(row[\"ts\"], UTC)\n",
" batch.add(\n",
" pstmt,\n",
" (\n",
" day,\n",
" row[\"device\"],\n",
" timestamp,\n",
" row[\"co\"],\n",
" row[\"humidity\"],\n",
" row[\"light\"],\n",
" row[\"lpg\"],\n",
" row[\"motion\"],\n",
" row[\"smoke\"],\n",
" row[\"temp\"],\n",
" ),\n",
" )\n",
"\n",
" session.execute(batch)\n",
"\n",
"\n",
"# Convert columns to appropriate types\n",
"df[\"light\"] = df[\"light\"] == \"true\"\n",
"df[\"motion\"] = df[\"motion\"] == \"true\"\n",
"df[\"ts\"] = df[\"ts\"].astype(float)\n",
"df[\"day\"] = df[\"ts\"].apply(\n",
" lambda x: datetime.fromtimestamp(x, UTC).strftime(\"%Y-%m-%d\")\n",
")\n",
"\n",
"grouped_df = df.groupby([\"day\", \"device\"])\n",
"\n",
"for name, group in grouped_df:\n",
" insert_data_batch(name, group)\n",
"\n",
"print(\"Data load complete\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(session.keyspace)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the Tools"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Python `import` statements for the demo:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentExecutor, create_openai_tools_agent\n",
"from langchain_community.agent_toolkits.cassandra_database.toolkit import (\n",
" CassandraDatabaseToolkit,\n",
")\n",
"from langchain_community.tools.cassandra_database.prompt import QUERY_PATH_PROMPT\n",
"from langchain_community.tools.cassandra_database.tool import (\n",
" GetSchemaCassandraDatabaseTool,\n",
" GetTableDataCassandraDatabaseTool,\n",
" QueryCassandraDatabaseTool,\n",
")\n",
"from langchain_community.utilities.cassandra_database import CassandraDatabase\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `CassandraDatabase` object is loaded from `cassio`, though it does accept a `Session`-type parameter as an alternative."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a CassandraDatabase instance\n",
"db = CassandraDatabase(include_tables=[\"iot_sensors\", \"iot_data\"])\n",
"\n",
"# Create the Cassandra Database tools\n",
"query_tool = QueryCassandraDatabaseTool(db=db)\n",
"schema_tool = GetSchemaCassandraDatabaseTool(db=db)\n",
"select_data_tool = GetTableDataCassandraDatabaseTool(db=db)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The tools can be invoked directly:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Test the tools\n",
"print(\"Executing a CQL query:\")\n",
"query = \"SELECT * FROM iot_sensors LIMIT 5;\"\n",
"result = query_tool.run({\"query\": query})\n",
"print(result)\n",
"\n",
"print(\"\\nGetting the schema for a keyspace:\")\n",
"schema = schema_tool.run({\"keyspace\": keyspace})\n",
"print(schema)\n",
"\n",
"print(\"\\nGetting data from a table:\")\n",
"table = \"iot_data\"\n",
"predicate = \"day = '2020-07-14' and device = 'b8:27:eb:bf:9d:51'\"\n",
"data = select_data_tool.run(\n",
" {\"keyspace\": keyspace, \"table\": table, \"predicate\": predicate, \"limit\": 5}\n",
")\n",
"print(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Agent Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import Tool\n",
"from langchain_experimental.utilities import PythonREPL\n",
"\n",
"python_repl = PythonREPL()\n",
"\n",
"repl_tool = Tool(\n",
" name=\"python_repl\",\n",
" description=\"A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\",\n",
" func=python_repl.run,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain import hub\n",
"\n",
"llm = ChatOpenAI(temperature=0, model=\"gpt-4-1106-preview\")\n",
"toolkit = CassandraDatabaseToolkit(db=db)\n",
"\n",
"# context = toolkit.get_context()\n",
"# tools = toolkit.get_tools()\n",
"tools = [schema_tool, select_data_tool, repl_tool]\n",
"\n",
"input = (\n",
" QUERY_PATH_PROMPT\n",
" + f\"\"\"\n",
"\n",
"Here is your task: In the {keyspace} keyspace, find the total number of times the temperature of each device has exceeded 23 degrees on July 14, 2020.\n",
" Create a summary report including the name of the room. Use Pandas if helpful.\n",
"\"\"\"\n",
")\n",
"\n",
"prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n",
"\n",
"# messages = [\n",
"# HumanMessagePromptTemplate.from_template(input),\n",
"# AIMessage(content=QUERY_PATH_PROMPT),\n",
"# MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
"# ]\n",
"\n",
"# prompt = ChatPromptTemplate.from_messages(messages)\n",
"# print(prompt)\n",
"\n",
"# Choose the LLM that will drive the agent\n",
"# Only certain models support this\n",
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0)\n",
"\n",
"# Construct the OpenAI Tools agent\n",
"agent = create_openai_tools_agent(llm, tools, prompt)\n",
"\n",
"print(\"Available tools:\")\n",
"for tool in tools:\n",
" print(\"\\t\" + tool.name + \" - \" + tool.description + \" - \" + str(tool))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)\n",
"\n",
"response = agent_executor.invoke({\"input\": input})\n",
"\n",
"print(response[\"output\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

@ -169,7 +169,7 @@
"\n",
"def get_tools(query):\n",
" # Get documents, which contain the Plugins to use\n",
" docs = retriever.get_relevant_documents(query)\n",
" docs = retriever.invoke(query)\n",
" # Get the toolkits, one for each plugin\n",
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
" # Get the tools: a separate NLAChain for each endpoint\n",

@ -193,7 +193,7 @@
"\n",
"def get_tools(query):\n",
" # Get documents, which contain the Plugins to use\n",
" docs = retriever.get_relevant_documents(query)\n",
" docs = retriever.invoke(query)\n",
" # Get the toolkits, one for each plugin\n",
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
" # Get the tools: a separate NLAChain for each endpoint\n",

@ -142,7 +142,7 @@
"\n",
"\n",
"def get_tools(query):\n",
" docs = retriever.get_relevant_documents(query)\n",
" docs = retriever.invoke(query)\n",
" return [ALL_TOOLS[d.metadata[\"index\"]] for d in docs]"
]
},

@ -84,7 +84,7 @@
"metadata": {},
"outputs": [],
"source": [
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
"chain = ElasticsearchDatabaseChain.from_llm(llm=llm, database=db, verbose=True)"
]
},

@ -362,7 +362,7 @@
],
"source": [
"llm = OpenAI()\n",
"llm(query)"
"llm.invoke(query)"
]
},
{

@ -108,7 +108,7 @@
" return obs_message\n",
"\n",
" def _act(self):\n",
" act_message = self.model(self.message_history)\n",
" act_message = self.model.invoke(self.message_history)\n",
" self.message_history.append(act_message)\n",
" action = int(self.action_parser.parse(act_message.content)[\"action\"])\n",
" return action\n",

@ -206,7 +206,7 @@
" print(\"---RETRIEVE---\")\n",
" state_dict = state[\"keys\"]\n",
" question = state_dict[\"question\"]\n",
" documents = retriever.get_relevant_documents(question)\n",
" documents = retriever.invoke(question)\n",
" return {\"keys\": {\"documents\": documents, \"question\": question}}\n",
"\n",
"\n",
@ -229,7 +229,7 @@
" prompt = hub.pull(\"rlm/rag-prompt\")\n",
"\n",
" # LLM\n",
" llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0, streaming=True)\n",
" llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0, streaming=True)\n",
"\n",
" # Post-processing\n",
" def format_docs(docs):\n",

@ -213,7 +213,7 @@
" print(\"---RETRIEVE---\")\n",
" state_dict = state[\"keys\"]\n",
" question = state_dict[\"question\"]\n",
" documents = retriever.get_relevant_documents(question)\n",
" documents = retriever.invoke(question)\n",
" return {\"keys\": {\"documents\": documents, \"question\": question}}\n",
"\n",
"\n",
@ -236,7 +236,7 @@
" prompt = hub.pull(\"rlm/rag-prompt\")\n",
"\n",
" # LLM\n",
" llm = ChatOpenAI(model_name=\"gpt-3.5-turbo\", temperature=0)\n",
" llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
"\n",
" # Post-processing\n",
" def format_docs(docs):\n",

@ -0,0 +1,818 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "70b333e6",
"metadata": {},
"source": [
"[![View Article](https://img.shields.io/badge/View%20Article-blue)](https://www.mongodb.com/developer/products/atlas/advanced-rag-langchain-mongodb/)\n"
]
},
{
"cell_type": "markdown",
"id": "d84a72ea",
"metadata": {},
"source": [
"# Adding Semantic Caching and Memory to your RAG Application using MongoDB and LangChain\n",
"\n",
"In this notebook, we will see how to use the new MongoDBCache and MongoDBChatMessageHistory in your RAG application.\n"
]
},
{
"cell_type": "markdown",
"id": "65527202",
"metadata": {},
"source": [
"## Step 1: Install required libraries\n",
"\n",
"- **datasets**: Python library to get access to datasets available on Hugging Face Hub\n",
"\n",
"- **langchain**: Python toolkit for LangChain\n",
"\n",
"- **langchain-mongodb**: Python package to use MongoDB as a vector store, semantic cache, chat history store etc. in LangChain\n",
"\n",
"- **langchain-openai**: Python package to use OpenAI models with LangChain\n",
"\n",
"- **pymongo**: Python toolkit for MongoDB\n",
"\n",
"- **pandas**: Python library for data analysis, exploration, and manipulation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "cbc22fa4",
"metadata": {},
"outputs": [],
"source": [
"! pip install -qU datasets langchain langchain-mongodb langchain-openai pymongo pandas"
]
},
{
"cell_type": "markdown",
"id": "39c41e87",
"metadata": {},
"source": [
"## Step 2: Setup pre-requisites\n",
"\n",
"* Set the MongoDB connection string. Follow the steps [here](https://www.mongodb.com/docs/manual/reference/connection-string/) to get the connection string from the Atlas UI.\n",
"\n",
"* Set the OpenAI API key. Steps to obtain an API key as [here](https://help.openai.com/en/articles/4936850-where-do-i-find-my-openai-api-key)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b56412ae",
"metadata": {},
"outputs": [],
"source": [
"import getpass"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "16a20d7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Enter your MongoDB connection string:········\n"
]
}
],
"source": [
"MONGODB_URI = getpass.getpass(\"Enter your MongoDB connection string:\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "978682d4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Enter your OpenAI API key:········\n"
]
}
],
"source": [
"OPENAI_API_KEY = getpass.getpass(\"Enter your OpenAI API key:\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "606081c5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"········\n"
]
}
],
"source": [
"# Optional-- If you want to enable Langsmith -- good for debugging\n",
"import os\n",
"\n",
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"id": "f6b8302c",
"metadata": {},
"source": [
"## Step 3: Download the dataset\n",
"\n",
"We will be using MongoDB's [embedded_movies](https://huggingface.co/datasets/MongoDB/embedded_movies) dataset"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1a3433a6",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from datasets import load_dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aee5311b",
"metadata": {},
"outputs": [],
"source": [
"# Ensure you have an HF_TOKEN in your development enviornment:\n",
"# access tokens can be created or copied from the Hugging Face platform (https://huggingface.co/docs/hub/en/security-tokens)\n",
"\n",
"# Load MongoDB's embedded_movies dataset from Hugging Face\n",
"# https://huggingface.co/datasets/MongoDB/airbnb_embeddings\n",
"\n",
"data = load_dataset(\"MongoDB/embedded_movies\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1d630a26",
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(data[\"train\"])"
]
},
{
"cell_type": "markdown",
"id": "a1f94f43",
"metadata": {},
"source": [
"## Step 4: Data analysis\n",
"\n",
"Make sure length of the dataset is what we expect, drop Nones etc."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b276df71",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>fullplot</th>\n",
" <th>type</th>\n",
" <th>plot_embedding</th>\n",
" <th>num_mflix_comments</th>\n",
" <th>runtime</th>\n",
" <th>writers</th>\n",
" <th>imdb</th>\n",
" <th>countries</th>\n",
" <th>rated</th>\n",
" <th>plot</th>\n",
" <th>title</th>\n",
" <th>languages</th>\n",
" <th>metacritic</th>\n",
" <th>directors</th>\n",
" <th>awards</th>\n",
" <th>genres</th>\n",
" <th>poster</th>\n",
" <th>cast</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Young Pauline is left a lot of money when her ...</td>\n",
" <td>movie</td>\n",
" <td>[0.00072939653, -0.026834568, 0.013515796, -0....</td>\n",
" <td>0</td>\n",
" <td>199.0</td>\n",
" <td>[Charles W. Goddard (screenplay), Basil Dickey...</td>\n",
" <td>{'id': 4465, 'rating': 7.6, 'votes': 744}</td>\n",
" <td>[USA]</td>\n",
" <td>None</td>\n",
" <td>Young Pauline is left a lot of money when her ...</td>\n",
" <td>The Perils of Pauline</td>\n",
" <td>[English]</td>\n",
" <td>NaN</td>\n",
" <td>[Louis J. Gasnier, Donald MacKenzie]</td>\n",
" <td>{'nominations': 0, 'text': '1 win.', 'wins': 1}</td>\n",
" <td>[Action]</td>\n",
" <td>https://m.media-amazon.com/images/M/MV5BMzgxOD...</td>\n",
" <td>[Pearl White, Crane Wilbur, Paul Panzer, Edwar...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" fullplot type \\\n",
"0 Young Pauline is left a lot of money when her ... movie \n",
"\n",
" plot_embedding num_mflix_comments \\\n",
"0 [0.00072939653, -0.026834568, 0.013515796, -0.... 0 \n",
"\n",
" runtime writers \\\n",
"0 199.0 [Charles W. Goddard (screenplay), Basil Dickey... \n",
"\n",
" imdb countries rated \\\n",
"0 {'id': 4465, 'rating': 7.6, 'votes': 744} [USA] None \n",
"\n",
" plot title \\\n",
"0 Young Pauline is left a lot of money when her ... The Perils of Pauline \n",
"\n",
" languages metacritic directors \\\n",
"0 [English] NaN [Louis J. Gasnier, Donald MacKenzie] \n",
"\n",
" awards genres \\\n",
"0 {'nominations': 0, 'text': '1 win.', 'wins': 1} [Action] \n",
"\n",
" poster \\\n",
"0 https://m.media-amazon.com/images/M/MV5BMzgxOD... \n",
"\n",
" cast \n",
"0 [Pearl White, Crane Wilbur, Paul Panzer, Edwar... "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Previewing the contents of the data\n",
"df.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "22ab375d",
"metadata": {},
"outputs": [],
"source": [
"# Only keep records where the fullplot field is not null\n",
"df = df[df[\"fullplot\"].notna()]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "fceed99a",
"metadata": {},
"outputs": [],
"source": [
"# Renaming the embedding field to \"embedding\" -- required by LangChain\n",
"df.rename(columns={\"plot_embedding\": \"embedding\"}, inplace=True)"
]
},
{
"cell_type": "markdown",
"id": "aedec13a",
"metadata": {},
"source": [
"## Step 5: Create a simple RAG chain using MongoDB as the vector store"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "11d292f3",
"metadata": {},
"outputs": [],
"source": [
"from langchain_mongodb import MongoDBAtlasVectorSearch\n",
"from pymongo import MongoClient\n",
"\n",
"# Initialize MongoDB python client\n",
"client = MongoClient(MONGODB_URI, appname=\"devrel.content.python\")\n",
"\n",
"DB_NAME = \"langchain_chatbot\"\n",
"COLLECTION_NAME = \"data\"\n",
"ATLAS_VECTOR_SEARCH_INDEX_NAME = \"vector_index\"\n",
"collection = client[DB_NAME][COLLECTION_NAME]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d8292d53",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeleteResult({'n': 1000, 'electionId': ObjectId('7fffffff00000000000000f6'), 'opTime': {'ts': Timestamp(1710523288, 1033), 't': 246}, 'ok': 1.0, '$clusterTime': {'clusterTime': Timestamp(1710523288, 1042), 'signature': {'hash': b\"i\\xa8\\xe9'\\x1ed\\xf2u\\xf3L\\xff\\xb1\\xf5\\xbfA\\x90\\xabJ\\x12\\x83\", 'keyId': 7299545392000008318}}, 'operationTime': Timestamp(1710523288, 1033)}, acknowledged=True)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Delete any existing records in the collection\n",
"collection.delete_many({})"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "36c68914",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data ingestion into MongoDB completed\n"
]
}
],
"source": [
"# Data Ingestion\n",
"records = df.to_dict(\"records\")\n",
"collection.insert_many(records)\n",
"\n",
"print(\"Data ingestion into MongoDB completed\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "cbfca0b8",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"# Using the text-embedding-ada-002 since that's what was used to create embeddings in the movies dataset\n",
"embeddings = OpenAIEmbeddings(\n",
" openai_api_key=OPENAI_API_KEY, model=\"text-embedding-ada-002\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "798e176c",
"metadata": {},
"outputs": [],
"source": [
"# Vector Store Creation\n",
"vector_store = MongoDBAtlasVectorSearch.from_connection_string(\n",
" connection_string=MONGODB_URI,\n",
" namespace=DB_NAME + \".\" + COLLECTION_NAME,\n",
" embedding=embeddings,\n",
" index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,\n",
" text_key=\"fullplot\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "c71cd087",
"metadata": {},
"outputs": [],
"source": [
"# Using the MongoDB vector store as a retriever in a RAG chain\n",
"retriever = vector_store.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": 5})"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "b6588cd3",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Generate context using the retriever, and pass the user question through\n",
"retrieve = {\n",
" \"context\": retriever | (lambda docs: \"\\n\\n\".join([d.page_content for d in docs])),\n",
" \"question\": RunnablePassthrough(),\n",
"}\n",
"template = \"\"\"Answer the question based only on the following context: \\\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"# Defining the chat prompt\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"# Defining the model to be used for chat completion\n",
"model = ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)\n",
"# Parse output as a string\n",
"parse_output = StrOutputParser()\n",
"\n",
"# Naive RAG chain\n",
"naive_rag_chain = retrieve | prompt | model | parse_output"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "aaae21f5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Once a Thief'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
]
},
{
"cell_type": "markdown",
"id": "75f929ef",
"metadata": {},
"source": [
"## Step 6: Create a RAG chain with chat history"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "94e7bd4a",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import MessagesPlaceholder\n",
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from langchain_mongodb.chat_message_histories import MongoDBChatMessageHistory"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "5bb30860",
"metadata": {},
"outputs": [],
"source": [
"def get_session_history(session_id: str) -> MongoDBChatMessageHistory:\n",
" return MongoDBChatMessageHistory(\n",
" MONGODB_URI, session_id, database_name=DB_NAME, collection_name=\"history\"\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "f51d0f35",
"metadata": {},
"outputs": [],
"source": [
"# Given a follow-up question and history, create a standalone question\n",
"standalone_system_prompt = \"\"\"\n",
"Given a chat history and a follow-up question, rephrase the follow-up question to be a standalone question. \\\n",
"Do NOT answer the question, just reformulate it if needed, otherwise return it as is. \\\n",
"Only return the final standalone question. \\\n",
"\"\"\"\n",
"standalone_question_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", standalone_system_prompt),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
")\n",
"\n",
"question_chain = standalone_question_prompt | model | parse_output"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "f3ef3354",
"metadata": {},
"outputs": [],
"source": [
"# Generate context by passing output of the question_chain i.e. the standalone question to the retriever\n",
"retriever_chain = RunnablePassthrough.assign(\n",
" context=question_chain\n",
" | retriever\n",
" | (lambda docs: \"\\n\\n\".join([d.page_content for d in docs]))\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "5afb7345",
"metadata": {},
"outputs": [],
"source": [
"# Create a prompt that includes the context, history and the follow-up question\n",
"rag_system_prompt = \"\"\"Answer the question based only on the following context: \\\n",
"{context}\n",
"\"\"\"\n",
"rag_prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", rag_system_prompt),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "f95f47d0",
"metadata": {},
"outputs": [],
"source": [
"# RAG chain\n",
"rag_chain = retriever_chain | rag_prompt | model | parse_output"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "9618d395",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The best movie to watch when feeling down could be \"Last Action Hero.\" It\\'s a fun and action-packed film that blends reality and fantasy, offering an escape from the real world and providing an entertaining distraction.'"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# RAG chain with history\n",
"with_message_history = RunnableWithMessageHistory(\n",
" rag_chain,\n",
" get_session_history,\n",
" input_messages_key=\"question\",\n",
" history_messages_key=\"history\",\n",
")\n",
"with_message_history.invoke(\n",
" {\"question\": \"What is the best movie to watch when sad?\"},\n",
" {\"configurable\": {\"session_id\": \"1\"}},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "6e3080d1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'I apologize for the confusion. Another movie that might lift your spirits when you\\'re feeling sad is \"Smilla\\'s Sense of Snow.\" It\\'s a mystery thriller that could engage your mind and distract you from your sadness with its intriguing plot and suspenseful storyline.'"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with_message_history.invoke(\n",
" {\n",
" \"question\": \"Hmmm..I don't want to watch that one. Can you suggest something else?\"\n",
" },\n",
" {\"configurable\": {\"session_id\": \"1\"}},\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "daea2953",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'For a lighter movie option, you might enjoy \"Cousins.\" It\\'s a comedy film set in Barcelona with action and humor, offering a fun and entertaining escape from reality. The storyline is engaging and filled with comedic moments that could help lift your spirits.'"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with_message_history.invoke(\n",
" {\"question\": \"How about something more light?\"},\n",
" {\"configurable\": {\"session_id\": \"1\"}},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0de23a88",
"metadata": {},
"source": [
"## Step 7: Get faster responses using Semantic Cache\n",
"\n",
"**NOTE:** Semantic cache only caches the input to the LLM. When using it in retrieval chains, remember that documents retrieved can change between runs resulting in cache misses for semantically similar queries."
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "5d6b6741",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.globals import set_llm_cache\n",
"from langchain_mongodb.cache import MongoDBAtlasSemanticCache\n",
"\n",
"set_llm_cache(\n",
" MongoDBAtlasSemanticCache(\n",
" connection_string=MONGODB_URI,\n",
" embedding=embeddings,\n",
" collection_name=\"semantic_cache\",\n",
" database_name=DB_NAME,\n",
" index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,\n",
" wait_until_ready=True, # Optional, waits until the cache is ready to be used\n",
" )\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "9825bc7b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 87.8 ms, sys: 670 µs, total: 88.5 ms\n",
"Wall time: 1.24 s\n"
]
},
{
"data": {
"text/plain": [
"'Once a Thief'"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "a5e518cf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 43.5 ms, sys: 4.16 ms, total: 47.7 ms\n",
"Wall time: 255 ms\n"
]
},
{
"data": {
"text/plain": [
"'Once a Thief'"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"naive_rag_chain.invoke(\"What is the best movie to watch when sad?\")"
]
},
{
"cell_type": "code",
"execution_count": 64,
"id": "3d3d3ad3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 115 ms, sys: 171 µs, total: 115 ms\n",
"Wall time: 1.38 s\n"
]
},
{
"data": {
"text/plain": [
"'I would recommend watching \"Last Action Hero\" when sad, as it is a fun and action-packed film that can help lift your spirits.'"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"naive_rag_chain.invoke(\"Which movie do I watch when sad?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "conda_pytorch_p310",
"language": "python",
"name": "conda_pytorch_p310"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -435,7 +435,7 @@
" display(HTML(image_html))\n",
"\n",
"\n",
"docs = retriever.get_relevant_documents(\"Woman with children\", k=10)\n",
"docs = retriever.invoke(\"Woman with children\", k=10)\n",
"for doc in docs:\n",
" if is_base64(doc.page_content):\n",
" plt_img_base64(doc.page_content)\n",

@ -443,7 +443,7 @@
"\n",
"\n",
"query = \"Woman with children\"\n",
"docs = retriever.get_relevant_documents(query, k=10)\n",
"docs = retriever.invoke(query, k=10)\n",
"\n",
"for doc in docs:\n",
" if is_base64(doc.page_content):\n",

@ -74,7 +74,7 @@
" Applies the chatmodel to the message history\n",
" and returns the message string\n",
" \"\"\"\n",
" message = self.model(\n",
" message = self.model.invoke(\n",
" [\n",
" self.system_message,\n",
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",

@ -79,7 +79,7 @@
" Applies the chatmodel to the message history\n",
" and returns the message string\n",
" \"\"\"\n",
" message = self.model(\n",
" message = self.model.invoke(\n",
" [\n",
" self.system_message,\n",
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
@ -234,7 +234,7 @@
" termination_clause=self.termination_clause if self.stop else \"\",\n",
" )\n",
"\n",
" self.response = self.model(\n",
" self.response = self.model.invoke(\n",
" [\n",
" self.system_message,\n",
" HumanMessage(content=response_prompt),\n",
@ -263,7 +263,7 @@
" speaker_names=speaker_names,\n",
" )\n",
"\n",
" choice_string = self.model(\n",
" choice_string = self.model.invoke(\n",
" [\n",
" self.system_message,\n",
" HumanMessage(content=choice_prompt),\n",
@ -299,7 +299,7 @@
" ),\n",
" next_speaker=self.next_speaker,\n",
" )\n",
" message = self.model(\n",
" message = self.model.invoke(\n",
" [\n",
" self.system_message,\n",
" HumanMessage(content=next_prompt),\n",

@ -71,7 +71,7 @@
" Applies the chatmodel to the message history\n",
" and returns the message string\n",
" \"\"\"\n",
" message = self.model(\n",
" message = self.model.invoke(\n",
" [\n",
" self.system_message,\n",
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
@ -164,7 +164,7 @@
" message_history=\"\\n\".join(self.message_history),\n",
" recent_message=self.message_history[-1],\n",
" )\n",
" bid_string = self.model([SystemMessage(content=prompt)]).content\n",
" bid_string = self.model.invoke([SystemMessage(content=prompt)]).content\n",
" return bid_string"
]
},

@ -0,0 +1,872 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Oracle AI Vector Search with Document Processing\n",
"Oracle AI Vector Search is designed for Artificial Intelligence (AI) workloads that allows you to query data based on semantics, rather than keywords.\n",
"One of the biggest benefit of Oracle AI Vector Search is that semantic search on unstructured data can be combined with relational search on business data in one single system. This is not only powerful but also significantly more effective because you don't need to add a specialized vector database, eliminating the pain of data fragmentation between multiple systems.\n",
"\n",
"In addition, because Oracle has been building database technologies for so long, your vectors can benefit from all of Oracle Database's most powerful features, like the following:\n",
"\n",
" * Partitioning Support\n",
" * Real Application Clusters scalability\n",
" * Exadata smart scans\n",
" * Shard processing across geographically distributed databases\n",
" * Transactions\n",
" * Parallel SQL\n",
" * Disaster recovery\n",
" * Security\n",
" * Oracle Machine Learning\n",
" * Oracle Graph Database\n",
" * Oracle Spatial and Graph\n",
" * Oracle Blockchain\n",
" * JSON\n",
"\n",
"This guide demonstrates how Oracle AI Vector Search can be used with Langchain to serve an end-to-end RAG pipeline. This guide goes through examples of:\n",
"\n",
" * Loading the documents from various sources using OracleDocLoader\n",
" * Summarizing them within/outside the database using OracleSummary\n",
" * Generating embeddings for them within/outside the database using OracleEmbeddings\n",
" * Chunking them according to different requirements using Advanced Oracle Capabilities from OracleTextSplitter\n",
" * Storing and Indexing them in a Vector Store and querying them for queries in OracleVS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prerequisites\n",
"\n",
"Please install Oracle Python Client driver to use Langchain with Oracle AI Vector Search. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# pip install oracledb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Demo User\n",
"First, create a demo user with all the required privileges. "
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connection successful!\n",
"User setup done!\n"
]
}
],
"source": [
"import sys\n",
"\n",
"import oracledb\n",
"\n",
"# please update with your username, password, hostname and service_name\n",
"# please make sure this user has sufficient privileges to perform all below\n",
"username = \"\"\n",
"password = \"\"\n",
"dsn = \"\"\n",
"\n",
"try:\n",
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
" print(\"Connection successful!\")\n",
"\n",
" cursor = conn.cursor()\n",
" cursor.execute(\n",
" \"\"\"\n",
" begin\n",
" -- drop user\n",
" begin\n",
" execute immediate 'drop user testuser cascade';\n",
" exception\n",
" when others then\n",
" dbms_output.put_line('Error setting up user.');\n",
" end;\n",
" execute immediate 'create user testuser identified by testuser';\n",
" execute immediate 'grant connect, unlimited tablespace, create credential, create procedure, create any index to testuser';\n",
" execute immediate 'create or replace directory DEMO_PY_DIR as ''/scratch/hroy/view_storage/hroy_devstorage/demo/orachain''';\n",
" execute immediate 'grant read, write on directory DEMO_PY_DIR to public';\n",
" execute immediate 'grant create mining model to testuser';\n",
"\n",
" -- network access\n",
" begin\n",
" DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(\n",
" host => '*',\n",
" ace => xs$ace_type(privilege_list => xs$name_list('connect'),\n",
" principal_name => 'testuser',\n",
" principal_type => xs_acl.ptype_db));\n",
" end;\n",
" end;\n",
" \"\"\"\n",
" )\n",
" print(\"User setup done!\")\n",
" cursor.close()\n",
" conn.close()\n",
"except Exception as e:\n",
" print(\"User setup failed!\")\n",
" cursor.close()\n",
" conn.close()\n",
" sys.exit(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Process Documents using Oracle AI\n",
"Let's think about a scenario that the users have some documents in Oracle Database or in a file system. They want to use the data for Oracle AI Vector Search using Langchain.\n",
"\n",
"For that, the users need to do some document preprocessing. The first step would be to read the documents, generate their summary(if needed) and then chunk/split them if needed. After that, they need to generate the embeddings for those chunks and store into Oracle AI Vector Store. Finally, the users will perform some semantic queries on those data. \n",
"\n",
"Oracle AI Vector Search Langchain library provides a range of document processing functionalities including document loading, splitting, generating summary and embeddings.\n",
"\n",
"In the following sections, we will go through how to use Oracle AI Langchain APIs to achieve each of these functionalities individually. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Connect to Demo User\n",
"The following sample code will show how to connect to Oracle Database. "
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connection successful!\n"
]
}
],
"source": [
"import sys\n",
"\n",
"import oracledb\n",
"\n",
"# please update with your username, password, hostname and service_name\n",
"username = \"\"\n",
"password = \"\"\n",
"dsn = \"\"\n",
"\n",
"try:\n",
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
" print(\"Connection successful!\")\n",
"except Exception as e:\n",
" print(\"Connection failed!\")\n",
" sys.exit(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Populate a Demo Table\n",
"Create a demo table and insert some sample documents."
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Table created and populated.\n"
]
}
],
"source": [
"try:\n",
" cursor = conn.cursor()\n",
"\n",
" drop_table_sql = \"\"\"drop table demo_tab\"\"\"\n",
" cursor.execute(drop_table_sql)\n",
"\n",
" create_table_sql = \"\"\"create table demo_tab (id number, data clob)\"\"\"\n",
" cursor.execute(create_table_sql)\n",
"\n",
" insert_row_sql = \"\"\"insert into demo_tab values (:1, :2)\"\"\"\n",
" rows_to_insert = [\n",
" (\n",
" 1,\n",
" \"If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\",\n",
" ),\n",
" (\n",
" 2,\n",
" \"A tablespace can be online (accessible) or offline (not accessible) whenever the database is open.\\nA tablespace is usually online so that its data is available to users. The SYSTEM tablespace and temporary tablespaces cannot be taken offline.\",\n",
" ),\n",
" (\n",
" 3,\n",
" \"The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table.\\nSometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\",\n",
" ),\n",
" ]\n",
" cursor.executemany(insert_row_sql, rows_to_insert)\n",
"\n",
" conn.commit()\n",
"\n",
" print(\"Table created and populated.\")\n",
" cursor.close()\n",
"except Exception as e:\n",
" print(\"Table creation failed.\")\n",
" cursor.close()\n",
" conn.close()\n",
" sys.exit(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"Now that we have a demo user and a demo table with some data, we just need to do one more setup. For embedding and summary, we have a few provider options that the users can choose from such as database, 3rd party providers like ocigenai, huggingface, openai, etc. If the users choose to use 3rd party provider, they need to create a credential with corresponding authentication information. On the other hand, if the users choose to use 'database' as provider, they need to load an onnx model to Oracle Database for embeddings; however, for summary, they don't need to do anything."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load ONNX Model\n",
"\n",
"To generate embeddings, Oracle provides a few provider options for users to choose from. The users can choose 'database' provider or some 3rd party providers like OCIGENAI, HuggingFace, etc.\n",
"\n",
"***Note*** If the users choose database option, they need to load an ONNX model to Oracle Database. The users do not need to load an ONNX model to Oracle Database if they choose to use 3rd party provider to generate embeddings.\n",
"\n",
"One of the core benefits of using an ONNX model is that the users do not need to transfer their data to 3rd party to generate embeddings. And also, since it does not involve any network or REST API calls, it may provide better performance.\n",
"\n",
"Here is the sample code to load an ONNX model to Oracle Database:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ONNX model loaded.\n"
]
}
],
"source": [
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
"\n",
"# please update with your related information\n",
"# make sure that you have onnx file in the system\n",
"onnx_dir = \"DEMO_PY_DIR\"\n",
"onnx_file = \"tinybert.onnx\"\n",
"model_name = \"demo_model\"\n",
"\n",
"try:\n",
" OracleEmbeddings.load_onnx_model(conn, onnx_dir, onnx_file, model_name)\n",
" print(\"ONNX model loaded.\")\n",
"except Exception as e:\n",
" print(\"ONNX model loading failed!\")\n",
" sys.exit(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Credential\n",
"\n",
"On the other hand, if the users choose to use 3rd party provider to generate embeddings and summary, they need to create credential to access 3rd party provider's end points.\n",
"\n",
"***Note:*** The users do not need to create any credential if they choose to use 'database' provider to generate embeddings and summary. Should the users choose to 3rd party provider, they need to create credential for the 3rd party provider they want to use. \n",
"\n",
"Here is a sample example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" cursor = conn.cursor()\n",
" cursor.execute(\n",
" \"\"\"\n",
" declare\n",
" jo json_object_t;\n",
" begin\n",
" -- HuggingFace\n",
" dbms_vector_chain.drop_credential(credential_name => 'HF_CRED');\n",
" jo := json_object_t();\n",
" jo.put('access_token', '<access_token>');\n",
" dbms_vector_chain.create_credential(\n",
" credential_name => 'HF_CRED',\n",
" params => json(jo.to_string));\n",
"\n",
" -- OCIGENAI\n",
" dbms_vector_chain.drop_credential(credential_name => 'OCI_CRED');\n",
" jo := json_object_t();\n",
" jo.put('user_ocid','<user_ocid>');\n",
" jo.put('tenancy_ocid','<tenancy_ocid>');\n",
" jo.put('compartment_ocid','<compartment_ocid>');\n",
" jo.put('private_key','<private_key>');\n",
" jo.put('fingerprint','<fingerprint>');\n",
" dbms_vector_chain.create_credential(\n",
" credential_name => 'OCI_CRED',\n",
" params => json(jo.to_string));\n",
" end;\n",
" \"\"\"\n",
" )\n",
" cursor.close()\n",
" print(\"Credentials created.\")\n",
"except Exception as ex:\n",
" cursor.close()\n",
" raise"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Documents\n",
"The users can load the documents from Oracle Database or a file system or both. They just need to set the loader parameters accordingly. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters.\n",
"\n",
"The main benefit of using OracleDocLoader is that it can handle 150+ different file formats. You don't need to use different types of loader for different file formats. Here is the list formats that we support: [Oracle Text Supported Document Formats](https://docs.oracle.com/en/database/oracle/oracle-database/23/ccref/oracle-text-supported-document-formats.html)\n",
"\n",
"The following sample code will show how to do that:"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of docs loaded: 3\n"
]
}
],
"source": [
"from langchain_community.document_loaders.oracleai import OracleDocLoader\n",
"from langchain_core.documents import Document\n",
"\n",
"# loading from Oracle Database table\n",
"# make sure you have the table with this specification\n",
"loader_params = {}\n",
"loader_params = {\n",
" \"owner\": \"testuser\",\n",
" \"tablename\": \"demo_tab\",\n",
" \"colname\": \"data\",\n",
"}\n",
"\n",
"\"\"\" load the docs \"\"\"\n",
"loader = OracleDocLoader(conn=conn, params=loader_params)\n",
"docs = loader.load()\n",
"\n",
"\"\"\" verify \"\"\"\n",
"print(f\"Number of docs loaded: {len(docs)}\")\n",
"# print(f\"Document-0: {docs[0].page_content}\") # content"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generate Summary\n",
"Now that the user loaded the documents, they may want to generate a summary for each document. The Oracle AI Vector Search Langchain library provides an API to do that. There are a few summary generation provider options including Database, OCIGENAI, HuggingFace and so on. The users can choose their preferred provider to generate a summary. Like before, they just need to set the summary parameters accordingly. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Note:*** The users may need to set proxy if they want to use some 3rd party summary generation providers other than Oracle's in-house and default provider: 'database'. If you don't have proxy, please remove the proxy parameter when you instantiate the OracleSummary."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# proxy to be used when we instantiate summary and embedder object\n",
"proxy = \"\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following sample code will show how to generate summary:"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of Summaries: 3\n"
]
}
],
"source": [
"from langchain_community.utilities.oracleai import OracleSummary\n",
"from langchain_core.documents import Document\n",
"\n",
"# using 'database' provider\n",
"summary_params = {\n",
" \"provider\": \"database\",\n",
" \"glevel\": \"S\",\n",
" \"numParagraphs\": 1,\n",
" \"language\": \"english\",\n",
"}\n",
"\n",
"# get the summary instance\n",
"# Remove proxy if not required\n",
"summ = OracleSummary(conn=conn, params=summary_params, proxy=proxy)\n",
"\n",
"list_summary = []\n",
"for doc in docs:\n",
" summary = summ.get_summary(doc.page_content)\n",
" list_summary.append(summary)\n",
"\n",
"\"\"\" verify \"\"\"\n",
"print(f\"Number of Summaries: {len(list_summary)}\")\n",
"# print(f\"Summary-0: {list_summary[0]}\") #content"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Split Documents\n",
"The documents can be in different sizes: small, medium, large, or very large. The users like to split/chunk their documents into smaller pieces to generate embeddings. There are lots of different splitting customizations the users can do. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters.\n",
"\n",
"The following sample code will show how to do that:"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of Chunks: 3\n"
]
}
],
"source": [
"from langchain_community.document_loaders.oracleai import OracleTextSplitter\n",
"from langchain_core.documents import Document\n",
"\n",
"# split by default parameters\n",
"splitter_params = {\"normalize\": \"all\"}\n",
"\n",
"\"\"\" get the splitter instance \"\"\"\n",
"splitter = OracleTextSplitter(conn=conn, params=splitter_params)\n",
"\n",
"list_chunks = []\n",
"for doc in docs:\n",
" chunks = splitter.split_text(doc.page_content)\n",
" list_chunks.extend(chunks)\n",
"\n",
"\"\"\" verify \"\"\"\n",
"print(f\"Number of Chunks: {len(list_chunks)}\")\n",
"# print(f\"Chunk-0: {list_chunks[0]}\") # content"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Generate Embeddings\n",
"Now that the documents are chunked as per requirements, the users may want to generate embeddings for these chunks. Oracle AI Vector Search provides a number of ways to generate embeddings. The users can load an ONNX embedding model to Oracle Database and use it to generate embeddings or use some 3rd party API's end points to generate embeddings. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Note:*** The users may need to set proxy if they want to use some 3rd party embedding generation providers other than 'database' provider (aka using ONNX model)."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# proxy to be used when we instantiate summary and embedder object\n",
"proxy = \"\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following sample code will show how to generate embeddings:"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of embeddings: 3\n"
]
}
],
"source": [
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
"from langchain_core.documents import Document\n",
"\n",
"# using ONNX model loaded to Oracle Database\n",
"embedder_params = {\"provider\": \"database\", \"model\": \"demo_model\"}\n",
"\n",
"# get the embedding instance\n",
"# Remove proxy if not required\n",
"embedder = OracleEmbeddings(conn=conn, params=embedder_params, proxy=proxy)\n",
"\n",
"embeddings = []\n",
"for doc in docs:\n",
" chunks = splitter.split_text(doc.page_content)\n",
" for chunk in chunks:\n",
" embed = embedder.embed_query(chunk)\n",
" embeddings.append(embed)\n",
"\n",
"\"\"\" verify \"\"\"\n",
"print(f\"Number of embeddings: {len(embeddings)}\")\n",
"# print(f\"Embedding-0: {embeddings[0]}\") # content"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Oracle AI Vector Store\n",
"Now that you know how to use Oracle AI Langchain library APIs individually to process the documents, let us show how to integrate with Oracle AI Vector Store to facilitate the semantic searches."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's import all the dependencies."
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"\n",
"import oracledb\n",
"from langchain_community.document_loaders.oracleai import (\n",
" OracleDocLoader,\n",
" OracleTextSplitter,\n",
")\n",
"from langchain_community.embeddings.oracleai import OracleEmbeddings\n",
"from langchain_community.utilities.oracleai import OracleSummary\n",
"from langchain_community.vectorstores import oraclevs\n",
"from langchain_community.vectorstores.oraclevs import OracleVS\n",
"from langchain_community.vectorstores.utils import DistanceStrategy\n",
"from langchain_core.documents import Document"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, let's combine all document processing stages together. Here is the sample code below:"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connection successful!\n",
"ONNX model loaded.\n",
"Number of total chunks with metadata: 3\n"
]
}
],
"source": [
"\"\"\"\n",
"In this sample example, we will use 'database' provider for both summary and embeddings.\n",
"So, we don't need to do the followings:\n",
" - set proxy for 3rd party providers\n",
" - create credential for 3rd party providers\n",
"\n",
"If you choose to use 3rd party provider, \n",
"please follow the necessary steps for proxy and credential.\n",
"\"\"\"\n",
"\n",
"# oracle connection\n",
"# please update with your username, password, hostname, and service_name\n",
"username = \"\"\n",
"password = \"\"\n",
"dsn = \"\"\n",
"\n",
"try:\n",
" conn = oracledb.connect(user=username, password=password, dsn=dsn)\n",
" print(\"Connection successful!\")\n",
"except Exception as e:\n",
" print(\"Connection failed!\")\n",
" sys.exit(1)\n",
"\n",
"\n",
"# load onnx model\n",
"# please update with your related information\n",
"onnx_dir = \"DEMO_PY_DIR\"\n",
"onnx_file = \"tinybert.onnx\"\n",
"model_name = \"demo_model\"\n",
"try:\n",
" OracleEmbeddings.load_onnx_model(conn, onnx_dir, onnx_file, model_name)\n",
" print(\"ONNX model loaded.\")\n",
"except Exception as e:\n",
" print(\"ONNX model loading failed!\")\n",
" sys.exit(1)\n",
"\n",
"\n",
"# params\n",
"# please update necessary fields with related information\n",
"loader_params = {\n",
" \"owner\": \"testuser\",\n",
" \"tablename\": \"demo_tab\",\n",
" \"colname\": \"data\",\n",
"}\n",
"summary_params = {\n",
" \"provider\": \"database\",\n",
" \"glevel\": \"S\",\n",
" \"numParagraphs\": 1,\n",
" \"language\": \"english\",\n",
"}\n",
"splitter_params = {\"normalize\": \"all\"}\n",
"embedder_params = {\"provider\": \"database\", \"model\": \"demo_model\"}\n",
"\n",
"# instantiate loader, summary, splitter, and embedder\n",
"loader = OracleDocLoader(conn=conn, params=loader_params)\n",
"summary = OracleSummary(conn=conn, params=summary_params)\n",
"splitter = OracleTextSplitter(conn=conn, params=splitter_params)\n",
"embedder = OracleEmbeddings(conn=conn, params=embedder_params)\n",
"\n",
"# process the documents\n",
"chunks_with_mdata = []\n",
"for id, doc in enumerate(docs, start=1):\n",
" summ = summary.get_summary(doc.page_content)\n",
" chunks = splitter.split_text(doc.page_content)\n",
" for ic, chunk in enumerate(chunks, start=1):\n",
" chunk_metadata = doc.metadata.copy()\n",
" chunk_metadata[\"id\"] = chunk_metadata[\"_oid\"] + \"$\" + str(id) + \"$\" + str(ic)\n",
" chunk_metadata[\"document_id\"] = str(id)\n",
" chunk_metadata[\"document_summary\"] = str(summ[0])\n",
" chunks_with_mdata.append(\n",
" Document(page_content=str(chunk), metadata=chunk_metadata)\n",
" )\n",
"\n",
"\"\"\" verify \"\"\"\n",
"print(f\"Number of total chunks with metadata: {len(chunks_with_mdata)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At this point, we have processed the documents and generated chunks with metadata. Next, we will create Oracle AI Vector Store with those chunks.\n",
"\n",
"Here is the sample code how to do that:"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vector Store Table: oravs\n"
]
}
],
"source": [
"# create Oracle AI Vector Store\n",
"vectorstore = OracleVS.from_documents(\n",
" chunks_with_mdata,\n",
" embedder,\n",
" client=conn,\n",
" table_name=\"oravs\",\n",
" distance_strategy=DistanceStrategy.DOT_PRODUCT,\n",
")\n",
"\n",
"\"\"\" verify \"\"\"\n",
"print(f\"Vector Store Table: {vectorstore.table_name}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above example creates a vector store with DOT_PRODUCT distance strategy. \n",
"\n",
"However, the users can create Oracle AI Vector Store provides different distance strategies. Please see the [comprehensive guide](/docs/integrations/vectorstores/oracle) for more information."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have embeddings stored in vector stores, let's create an index on them to get better semantic search performance during query time.\n",
"\n",
"***Note*** If you are getting some insufficient memory error, please increase ***vector_memory_size*** in your database.\n",
"\n",
"Here is the sample code to create an index:"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"oraclevs.create_index(\n",
" conn, vectorstore, params={\"idx_name\": \"hnsw_oravs\", \"idx_type\": \"HNSW\"}\n",
")\n",
"\n",
"print(\"Index created.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above example creates a default HNSW index on the embeddings stored in 'oravs' table. The users can set different parameters as per their requirements. Please refer to the Oracle AI Vector Search Guide book for complete information about these parameters.\n",
"\n",
"Also, there are different types of vector indices that the users can create. Please see the [comprehensive guide](/docs/integrations/vectorstores/oracle) for more information.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Perform Semantic Search\n",
"All set!\n",
"\n",
"We have processed the documents, stored them to vector store, and then created index to get better query performance. Now let's do some semantic searches.\n",
"\n",
"Here is the sample code for this:"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table. Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.', metadata={'_oid': '662f2f257677f3c2311a8ff999fd34e5', '_rowid': 'AAAR/xAAEAAAAAnAAC', 'id': '662f2f257677f3c2311a8ff999fd34e5$3$1', 'document_id': '3', 'document_summary': 'Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\\n\\n'})]\n",
"[]\n",
"[(Document(page_content='The database stores LOBs differently from other data types. Creating a LOB column implicitly creates a LOB segment and a LOB index. The tablespace containing the LOB segment and LOB index, which are always stored together, may be different from the tablespace containing the table. Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.', metadata={'_oid': '662f2f257677f3c2311a8ff999fd34e5', '_rowid': 'AAAR/xAAEAAAAAnAAC', 'id': '662f2f257677f3c2311a8ff999fd34e5$3$1', 'document_id': '3', 'document_summary': 'Sometimes the database can store small amounts of LOB data in the table itself rather than in a separate LOB segment.\\n\\n'}), 0.055675752460956573)]\n",
"[]\n",
"[Document(page_content='If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.', metadata={'_oid': '662f2f253acf96b33b430b88699490a2', '_rowid': 'AAAR/xAAEAAAAAnAAA', 'id': '662f2f253acf96b33b430b88699490a2$1$1', 'document_id': '1', 'document_summary': 'If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\\n\\n'})]\n",
"[Document(page_content='If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.', metadata={'_oid': '662f2f253acf96b33b430b88699490a2', '_rowid': 'AAAR/xAAEAAAAAnAAA', 'id': '662f2f253acf96b33b430b88699490a2$1$1', 'document_id': '1', 'document_summary': 'If the answer to any preceding questions is yes, then the database stops the search and allocates space from the specified tablespace; otherwise, space is allocated from the database default shared temporary tablespace.\\n\\n'})]\n"
]
}
],
"source": [
"query = \"What is Oracle AI Vector Store?\"\n",
"filter = {\"document_id\": [\"1\"]}\n",
"\n",
"# Similarity search without a filter\n",
"print(vectorstore.similarity_search(query, 1))\n",
"\n",
"# Similarity search with a filter\n",
"print(vectorstore.similarity_search(query, 1, filter=filter))\n",
"\n",
"# Similarity search with relevance score\n",
"print(vectorstore.similarity_search_with_score(query, 1))\n",
"\n",
"# Similarity search with relevance score with filter\n",
"print(vectorstore.similarity_search_with_score(query, 1, filter=filter))\n",
"\n",
"# Max marginal relevance search\n",
"print(vectorstore.max_marginal_relevance_search(query, 1, fetch_k=20, lambda_mult=0.5))\n",
"\n",
"# Max marginal relevance search with filter\n",
"print(\n",
" vectorstore.max_marginal_relevance_search(\n",
" query, 1, fetch_k=20, lambda_mult=0.5, filter=filter\n",
" )\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

@ -129,7 +129,7 @@
" return obs_message\n",
"\n",
" def _act(self):\n",
" act_message = self.model(self.message_history)\n",
" act_message = self.model.invoke(self.message_history)\n",
" self.message_history.append(act_message)\n",
" action = int(self.action_parser.parse(act_message.content)[\"action\"])\n",
" return action\n",

@ -84,7 +84,7 @@
"from langchain.retrievers import KayAiRetriever\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo\")\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo\")\n",
"retriever = KayAiRetriever.create(\n",
" dataset_id=\"company\", data_types=[\"PressRelease\"], num_contexts=6\n",
")\n",

@ -168,7 +168,7 @@
"\n",
"retriever = vector_store.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": 3})\n",
"\n",
"retrieved_docs = retriever.get_relevant_documents(\"<your question>\")\n",
"retrieved_docs = retriever.invoke(\"<your question>\")\n",
"\n",
"print(retrieved_docs[0].page_content)\n",
"\n",

@ -0,0 +1,80 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# RAG using Upstage Layout Analysis and Groundedness Check\n",
"This example illustrates RAG using [Upstage](https://python.langchain.com/docs/integrations/providers/upstage/) Layout Analysis and Groundedness Check."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_core.runnables.base import RunnableSerializable\n",
"from langchain_upstage import (\n",
" ChatUpstage,\n",
" UpstageEmbeddings,\n",
" UpstageGroundednessCheck,\n",
" UpstageLayoutAnalysisLoader,\n",
")\n",
"\n",
"model = ChatUpstage()\n",
"\n",
"files = [\"/PATH/TO/YOUR/FILE.pdf\", \"/PATH/TO/YOUR/FILE2.pdf\"]\n",
"\n",
"loader = UpstageLayoutAnalysisLoader(file_path=files, split=\"element\")\n",
"\n",
"docs = loader.load()\n",
"\n",
"vectorstore = DocArrayInMemorySearch.from_documents(docs, embedding=UpstageEmbeddings())\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"output_parser = StrOutputParser()\n",
"\n",
"retrieved_docs = retriever.get_relevant_documents(\"How many parameters in SOLAR model?\")\n",
"\n",
"groundedness_check = UpstageGroundednessCheck()\n",
"groundedness = \"\"\n",
"while groundedness != \"grounded\":\n",
" chain: RunnableSerializable = RunnablePassthrough() | prompt | model | output_parser\n",
"\n",
" result = chain.invoke(\n",
" {\n",
" \"context\": retrieved_docs,\n",
" \"question\": \"How many parameters in SOLAR model?\",\n",
" }\n",
" )\n",
"\n",
" groundedness = groundedness_check.invoke(\n",
" {\n",
" \"context\": retrieved_docs,\n",
" \"answer\": result,\n",
" }\n",
" )"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -274,7 +274,7 @@
"db = SQLDatabase.from_uri(\n",
" CONNECTION_STRING\n",
") # We reconnect to db so the new columns are loaded as well.\n",
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)\n",
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)\n",
"\n",
"sql_query_chain = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",

@ -355,15 +355,15 @@
"metadata": {},
"outputs": [],
"source": [
"attribute_info[-2][\n",
" \"description\"\n",
"] += f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
"attribute_info[3][\n",
" \"description\"\n",
"] += f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
"attribute_info[-3][\n",
" \"description\"\n",
"] += f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\""
"attribute_info[-2][\"description\"] += (\n",
" f\". Valid values are {sorted(latest_price['starrating'].value_counts().index.tolist())}\"\n",
")\n",
"attribute_info[3][\"description\"] += (\n",
" f\". Valid values are {sorted(latest_price['maxoccupancy'].value_counts().index.tolist())}\"\n",
")\n",
"attribute_info[-3][\"description\"] += (\n",
" f\". Valid values are {sorted(latest_price['country'].value_counts().index.tolist())}\"\n",
")"
]
},
{
@ -688,9 +688,9 @@
"metadata": {},
"outputs": [],
"source": [
"attribute_info[-3][\n",
" \"description\"\n",
"] += \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
"attribute_info[-3][\"description\"] += (\n",
" \". NOTE: Only use the 'eq' operator if a specific country is mentioned. If a region is mentioned, include all relevant countries in filter.\"\n",
")\n",
"chain = load_query_constructor_runnable(\n",
" ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0),\n",
" doc_contents,\n",
@ -1227,7 +1227,7 @@
}
],
"source": [
"results = retriever.get_relevant_documents(\n",
"results = retriever.invoke(\n",
" \"I want to stay somewhere highly rated along the coast. I want a room with a patio and a fireplace.\"\n",
")\n",
"for res in results:\n",

@ -22,7 +22,8 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent\n",
"from langchain import hub\n",
"from langchain.agents import AgentExecutor, Tool, ZeroShotAgent, create_react_agent\n",
"from langchain.chains import LLMChain\n",
"from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory\n",
"from langchain.prompts import PromptTemplate\n",
@ -84,19 +85,7 @@
"metadata": {},
"outputs": [],
"source": [
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
"suffix = \"\"\"Begin!\"\n",
"\n",
"{chat_history}\n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\"\n",
"\n",
"prompt = ZeroShotAgent.create_prompt(\n",
" tools,\n",
" prefix=prefix,\n",
" suffix=suffix,\n",
" input_variables=[\"input\", \"chat_history\", \"agent_scratchpad\"],\n",
")"
"prompt = hub.pull(\"hwchase17/react\")"
]
},
{
@ -114,16 +103,14 @@
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
"agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)\n",
"agent_chain = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True, memory=memory\n",
")"
"model = OpenAI()\n",
"agent = create_react_agent(model, tools, prompt)\n",
"agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 36,
"id": "ca4bc1fb",
"metadata": {},
"outputs": [
@ -133,15 +120,15 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I should research ChatGPT to answer this question.\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I should research ChatGPT to answer this question.\n",
"Action: Search\n",
"Action Input: \"ChatGPT\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001b[0m\n",
"Action Input: \"ChatGPT\"\u001B[0m\n",
"Observation: \u001B[36;1m\u001B[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@ -153,10 +140,40 @@
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mKeyboardInterrupt\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[36], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43magent_executor\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43minvoke\u001B[49m\u001B[43m(\u001B[49m\u001B[43m{\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43minput\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mWhat is ChatGPT?\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m}\u001B[49m\u001B[43m)\u001B[49m\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/chains/base.py:163\u001B[0m, in \u001B[0;36mChain.invoke\u001B[0;34m(self, input, config, **kwargs)\u001B[0m\n\u001B[1;32m 161\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mBaseException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 162\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_chain_error(e)\n\u001B[0;32m--> 163\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m e\n\u001B[1;32m 164\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_chain_end(outputs)\n\u001B[1;32m 166\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m include_run_info:\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/chains/base.py:153\u001B[0m, in \u001B[0;36mChain.invoke\u001B[0;34m(self, input, config, **kwargs)\u001B[0m\n\u001B[1;32m 150\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 151\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_validate_inputs(inputs)\n\u001B[1;32m 152\u001B[0m outputs \u001B[38;5;241m=\u001B[39m (\n\u001B[0;32m--> 153\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_call\u001B[49m\u001B[43m(\u001B[49m\u001B[43minputs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 154\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_arg_supported\n\u001B[1;32m 155\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_call(inputs)\n\u001B[1;32m 156\u001B[0m )\n\u001B[1;32m 158\u001B[0m final_outputs: Dict[\u001B[38;5;28mstr\u001B[39m, Any] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mprep_outputs(\n\u001B[1;32m 159\u001B[0m inputs, outputs, return_only_outputs\n\u001B[1;32m 160\u001B[0m )\n\u001B[1;32m 161\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mBaseException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1432\u001B[0m, in \u001B[0;36mAgentExecutor._call\u001B[0;34m(self, inputs, run_manager)\u001B[0m\n\u001B[1;32m 1430\u001B[0m \u001B[38;5;66;03m# We now enter the agent loop (until it returns something).\u001B[39;00m\n\u001B[1;32m 1431\u001B[0m \u001B[38;5;28;01mwhile\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_should_continue(iterations, time_elapsed):\n\u001B[0;32m-> 1432\u001B[0m next_step_output \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_take_next_step\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1433\u001B[0m \u001B[43m \u001B[49m\u001B[43mname_to_tool_map\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1434\u001B[0m \u001B[43m \u001B[49m\u001B[43mcolor_mapping\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1435\u001B[0m \u001B[43m \u001B[49m\u001B[43minputs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1436\u001B[0m \u001B[43m \u001B[49m\u001B[43mintermediate_steps\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1437\u001B[0m \u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1438\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1439\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(next_step_output, AgentFinish):\n\u001B[1;32m 1440\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_return(\n\u001B[1;32m 1441\u001B[0m next_step_output, intermediate_steps, run_manager\u001B[38;5;241m=\u001B[39mrun_manager\n\u001B[1;32m 1442\u001B[0m )\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1138\u001B[0m, in \u001B[0;36mAgentExecutor._take_next_step\u001B[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001B[0m\n\u001B[1;32m 1129\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m_take_next_step\u001B[39m(\n\u001B[1;32m 1130\u001B[0m \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m 1131\u001B[0m name_to_tool_map: Dict[\u001B[38;5;28mstr\u001B[39m, BaseTool],\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 1135\u001B[0m run_manager: Optional[CallbackManagerForChainRun] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 1136\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m Union[AgentFinish, List[Tuple[AgentAction, \u001B[38;5;28mstr\u001B[39m]]]:\n\u001B[1;32m 1137\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_consume_next_step(\n\u001B[0;32m-> 1138\u001B[0m [\n\u001B[1;32m 1139\u001B[0m a\n\u001B[1;32m 1140\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m a \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_iter_next_step(\n\u001B[1;32m 1141\u001B[0m name_to_tool_map,\n\u001B[1;32m 1142\u001B[0m color_mapping,\n\u001B[1;32m 1143\u001B[0m inputs,\n\u001B[1;32m 1144\u001B[0m intermediate_steps,\n\u001B[1;32m 1145\u001B[0m run_manager,\n\u001B[1;32m 1146\u001B[0m )\n\u001B[1;32m 1147\u001B[0m ]\n\u001B[1;32m 1148\u001B[0m )\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1138\u001B[0m, in \u001B[0;36m<listcomp>\u001B[0;34m(.0)\u001B[0m\n\u001B[1;32m 1129\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m_take_next_step\u001B[39m(\n\u001B[1;32m 1130\u001B[0m \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m 1131\u001B[0m name_to_tool_map: Dict[\u001B[38;5;28mstr\u001B[39m, BaseTool],\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 1135\u001B[0m run_manager: Optional[CallbackManagerForChainRun] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 1136\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m Union[AgentFinish, List[Tuple[AgentAction, \u001B[38;5;28mstr\u001B[39m]]]:\n\u001B[1;32m 1137\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_consume_next_step(\n\u001B[0;32m-> 1138\u001B[0m [\n\u001B[1;32m 1139\u001B[0m a\n\u001B[1;32m 1140\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m a \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_iter_next_step(\n\u001B[1;32m 1141\u001B[0m name_to_tool_map,\n\u001B[1;32m 1142\u001B[0m color_mapping,\n\u001B[1;32m 1143\u001B[0m inputs,\n\u001B[1;32m 1144\u001B[0m intermediate_steps,\n\u001B[1;32m 1145\u001B[0m run_manager,\n\u001B[1;32m 1146\u001B[0m )\n\u001B[1;32m 1147\u001B[0m ]\n\u001B[1;32m 1148\u001B[0m )\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1223\u001B[0m, in \u001B[0;36mAgentExecutor._iter_next_step\u001B[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001B[0m\n\u001B[1;32m 1221\u001B[0m \u001B[38;5;28;01myield\u001B[39;00m agent_action\n\u001B[1;32m 1222\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m agent_action \u001B[38;5;129;01min\u001B[39;00m actions:\n\u001B[0;32m-> 1223\u001B[0m \u001B[38;5;28;01myield\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_perform_agent_action\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1224\u001B[0m \u001B[43m \u001B[49m\u001B[43mname_to_tool_map\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcolor_mapping\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43magent_action\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\n\u001B[1;32m 1225\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n",
"File \u001B[0;32m~/code/langchain/libs/langchain/langchain/agents/agent.py:1245\u001B[0m, in \u001B[0;36mAgentExecutor._perform_agent_action\u001B[0;34m(self, name_to_tool_map, color_mapping, agent_action, run_manager)\u001B[0m\n\u001B[1;32m 1243\u001B[0m tool_run_kwargs[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mllm_prefix\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1244\u001B[0m \u001B[38;5;66;03m# We then call the tool on the tool input to get an observation\u001B[39;00m\n\u001B[0;32m-> 1245\u001B[0m observation \u001B[38;5;241m=\u001B[39m \u001B[43mtool\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrun\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1246\u001B[0m \u001B[43m \u001B[49m\u001B[43magent_action\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mtool_input\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1247\u001B[0m \u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1248\u001B[0m \u001B[43m \u001B[49m\u001B[43mcolor\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcolor\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1249\u001B[0m \u001B[43m \u001B[49m\u001B[43mcallbacks\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mget_child\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mif\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43;01melse\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mNone\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 1250\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_run_kwargs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1251\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1252\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1253\u001B[0m tool_run_kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39magent\u001B[38;5;241m.\u001B[39mtool_run_logging_kwargs()\n",
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:422\u001B[0m, in \u001B[0;36mBaseTool.run\u001B[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001B[0m\n\u001B[1;32m 420\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m (\u001B[38;5;167;01mException\u001B[39;00m, \u001B[38;5;167;01mKeyboardInterrupt\u001B[39;00m) \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 421\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_tool_error(e)\n\u001B[0;32m--> 422\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m e\n\u001B[1;32m 423\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 424\u001B[0m run_manager\u001B[38;5;241m.\u001B[39mon_tool_end(observation, color\u001B[38;5;241m=\u001B[39mcolor, name\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mname, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs)\n",
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:381\u001B[0m, in \u001B[0;36mBaseTool.run\u001B[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001B[0m\n\u001B[1;32m 378\u001B[0m parsed_input \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_parse_input(tool_input)\n\u001B[1;32m 379\u001B[0m tool_args, tool_kwargs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_to_args_and_kwargs(parsed_input)\n\u001B[1;32m 380\u001B[0m observation \u001B[38;5;241m=\u001B[39m (\n\u001B[0;32m--> 381\u001B[0m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_run\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_args\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrun_manager\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mrun_manager\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mtool_kwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 382\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_arg_supported\n\u001B[1;32m 383\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_run(\u001B[38;5;241m*\u001B[39mtool_args, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mtool_kwargs)\n\u001B[1;32m 384\u001B[0m )\n\u001B[1;32m 385\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m ValidationError \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 386\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mhandle_validation_error:\n",
"File \u001B[0;32m~/code/langchain/libs/core/langchain_core/tools.py:588\u001B[0m, in \u001B[0;36mTool._run\u001B[0;34m(self, run_manager, *args, **kwargs)\u001B[0m\n\u001B[1;32m 579\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc:\n\u001B[1;32m 580\u001B[0m new_argument_supported \u001B[38;5;241m=\u001B[39m signature(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc)\u001B[38;5;241m.\u001B[39mparameters\u001B[38;5;241m.\u001B[39mget(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcallbacks\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 581\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m (\n\u001B[1;32m 582\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc(\n\u001B[1;32m 583\u001B[0m \u001B[38;5;241m*\u001B[39margs,\n\u001B[1;32m 584\u001B[0m callbacks\u001B[38;5;241m=\u001B[39mrun_manager\u001B[38;5;241m.\u001B[39mget_child() \u001B[38;5;28;01mif\u001B[39;00m run_manager \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m 585\u001B[0m \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs,\n\u001B[1;32m 586\u001B[0m )\n\u001B[1;32m 587\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m new_argument_supported\n\u001B[0;32m--> 588\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfunc\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 589\u001B[0m )\n\u001B[1;32m 590\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mNotImplementedError\u001B[39;00m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mTool does not support sync\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n",
"File \u001B[0;32m~/code/langchain/libs/community/langchain_community/utilities/google_search.py:94\u001B[0m, in \u001B[0;36mGoogleSearchAPIWrapper.run\u001B[0;34m(self, query)\u001B[0m\n\u001B[1;32m 92\u001B[0m \u001B[38;5;250m\u001B[39m\u001B[38;5;124;03m\"\"\"Run query through GoogleSearch and parse result.\"\"\"\u001B[39;00m\n\u001B[1;32m 93\u001B[0m snippets \u001B[38;5;241m=\u001B[39m []\n\u001B[0;32m---> 94\u001B[0m results \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_google_search_results\u001B[49m\u001B[43m(\u001B[49m\u001B[43mquery\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mnum\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mk\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 95\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mlen\u001B[39m(results) \u001B[38;5;241m==\u001B[39m \u001B[38;5;241m0\u001B[39m:\n\u001B[1;32m 96\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mNo good Google Search Result was found\u001B[39m\u001B[38;5;124m\"\u001B[39m\n",
"File \u001B[0;32m~/code/langchain/libs/community/langchain_community/utilities/google_search.py:62\u001B[0m, in \u001B[0;36mGoogleSearchAPIWrapper._google_search_results\u001B[0;34m(self, search_term, **kwargs)\u001B[0m\n\u001B[1;32m 60\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39msiterestrict:\n\u001B[1;32m 61\u001B[0m cse \u001B[38;5;241m=\u001B[39m cse\u001B[38;5;241m.\u001B[39msiterestrict()\n\u001B[0;32m---> 62\u001B[0m res \u001B[38;5;241m=\u001B[39m \u001B[43mcse\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mlist\u001B[49m\u001B[43m(\u001B[49m\u001B[43mq\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43msearch_term\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcx\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mgoogle_cse_id\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mexecute\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 63\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m res\u001B[38;5;241m.\u001B[39mget(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mitems\u001B[39m\u001B[38;5;124m\"\u001B[39m, [])\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/_helpers.py:130\u001B[0m, in \u001B[0;36mpositional.<locals>.positional_decorator.<locals>.positional_wrapper\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 128\u001B[0m \u001B[38;5;28;01melif\u001B[39;00m positional_parameters_enforcement \u001B[38;5;241m==\u001B[39m POSITIONAL_WARNING:\n\u001B[1;32m 129\u001B[0m logger\u001B[38;5;241m.\u001B[39mwarning(message)\n\u001B[0;32m--> 130\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mwrapped\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/http.py:923\u001B[0m, in \u001B[0;36mHttpRequest.execute\u001B[0;34m(self, http, num_retries)\u001B[0m\n\u001B[1;32m 920\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mheaders[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcontent-length\u001B[39m\u001B[38;5;124m\"\u001B[39m] \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mstr\u001B[39m(\u001B[38;5;28mlen\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mbody))\n\u001B[1;32m 922\u001B[0m \u001B[38;5;66;03m# Handle retries for server-side errors.\u001B[39;00m\n\u001B[0;32m--> 923\u001B[0m resp, content \u001B[38;5;241m=\u001B[39m \u001B[43m_retry_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 924\u001B[0m \u001B[43m \u001B[49m\u001B[43mhttp\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 925\u001B[0m \u001B[43m \u001B[49m\u001B[43mnum_retries\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 926\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mrequest\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 927\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_sleep\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 928\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_rand\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 929\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mstr\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43muri\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 930\u001B[0m \u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mstr\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmethod\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 931\u001B[0m \u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 932\u001B[0m \u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 933\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 935\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m callback \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mresponse_callbacks:\n\u001B[1;32m 936\u001B[0m callback(resp)\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/googleapiclient/http.py:191\u001B[0m, in \u001B[0;36m_retry_request\u001B[0;34m(http, num_retries, req_type, sleep, rand, uri, method, *args, **kwargs)\u001B[0m\n\u001B[1;32m 189\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 190\u001B[0m exception \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[0;32m--> 191\u001B[0m resp, content \u001B[38;5;241m=\u001B[39m \u001B[43mhttp\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrequest\u001B[49m\u001B[43m(\u001B[49m\u001B[43muri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 192\u001B[0m \u001B[38;5;66;03m# Retry on SSL errors and socket timeout errors.\u001B[39;00m\n\u001B[1;32m 193\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m _ssl_SSLError \u001B[38;5;28;01mas\u001B[39;00m ssl_error:\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1724\u001B[0m, in \u001B[0;36mHttp.request\u001B[0;34m(self, uri, method, body, headers, redirections, connection_type)\u001B[0m\n\u001B[1;32m 1722\u001B[0m content \u001B[38;5;241m=\u001B[39m \u001B[38;5;124mb\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1723\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[0;32m-> 1724\u001B[0m (response, content) \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1725\u001B[0m \u001B[43m \u001B[49m\u001B[43mconn\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mauthority\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43muri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrequest_uri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mredirections\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcachekey\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1726\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1727\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 1728\u001B[0m is_timeout \u001B[38;5;241m=\u001B[39m \u001B[38;5;28misinstance\u001B[39m(e, socket\u001B[38;5;241m.\u001B[39mtimeout)\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1444\u001B[0m, in \u001B[0;36mHttp._request\u001B[0;34m(self, conn, host, absolute_uri, request_uri, method, body, headers, redirections, cachekey)\u001B[0m\n\u001B[1;32m 1441\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth:\n\u001B[1;32m 1442\u001B[0m auth\u001B[38;5;241m.\u001B[39mrequest(method, request_uri, headers, body)\n\u001B[0;32m-> 1444\u001B[0m (response, content) \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_conn_request\u001B[49m\u001B[43m(\u001B[49m\u001B[43mconn\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mrequest_uri\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmethod\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbody\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mheaders\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1446\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth:\n\u001B[1;32m 1447\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m auth\u001B[38;5;241m.\u001B[39mresponse(response, body):\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1366\u001B[0m, in \u001B[0;36mHttp._conn_request\u001B[0;34m(self, conn, request_uri, method, body, headers)\u001B[0m\n\u001B[1;32m 1364\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 1365\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m conn\u001B[38;5;241m.\u001B[39msock \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n\u001B[0;32m-> 1366\u001B[0m \u001B[43mconn\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconnect\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1367\u001B[0m conn\u001B[38;5;241m.\u001B[39mrequest(method, request_uri, body, headers)\n\u001B[1;32m 1368\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m socket\u001B[38;5;241m.\u001B[39mtimeout:\n",
"File \u001B[0;32m~/code/langchain/.venv/lib/python3.10/site-packages/httplib2/__init__.py:1156\u001B[0m, in \u001B[0;36mHTTPSConnectionWithTimeout.connect\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m 1154\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m has_timeout(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtimeout):\n\u001B[1;32m 1155\u001B[0m sock\u001B[38;5;241m.\u001B[39msettimeout(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtimeout)\n\u001B[0;32m-> 1156\u001B[0m \u001B[43msock\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mconnect\u001B[49m\u001B[43m(\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mhost\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mport\u001B[49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1158\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39msock \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_context\u001B[38;5;241m.\u001B[39mwrap_socket(sock, server_hostname\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mhost)\n\u001B[1;32m 1160\u001B[0m \u001B[38;5;66;03m# Python 3.3 compatibility: emulate the check_hostname behavior\u001B[39;00m\n",
"\u001B[0;31mKeyboardInterrupt\u001B[0m: "
]
}
],
"source": [
"agent_chain.run(input=\"What is ChatGPT?\")"
"agent_executor.invoke({\"input\": \"What is ChatGPT?\"})"
]
},
{
@ -179,15 +196,15 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to find out who developed ChatGPT\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I need to find out who developed ChatGPT\n",
"Action: Search\n",
"Action Input: Who developed ChatGPT\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: ChatGPT was developed by OpenAI.\u001b[0m\n",
"Action Input: Who developed ChatGPT\u001B[0m\n",
"Observation: \u001B[36;1m\u001B[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer\n",
"Final Answer: ChatGPT was developed by OpenAI.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@ -202,7 +219,7 @@
}
],
"source": [
"agent_chain.run(input=\"Who developed it?\")"
"agent_executor.invoke({\"input\": \"Who developed it?\"})"
]
},
{
@ -217,14 +234,14 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
"Action: Summary\n",
"Action Input: My daughter 5 years old\u001b[0m\n",
"Action Input: My daughter 5 years old\u001B[0m\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"\u001B[1m> Entering new LLMChain chain...\u001B[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThis is a conversation between a human and a bot:\n",
"\u001B[32;1m\u001B[1;3mThis is a conversation between a human and a bot:\n",
"\n",
"Human: What is ChatGPT?\n",
"AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\n",
@ -232,16 +249,16 @@
"AI: ChatGPT was developed by OpenAI.\n",
"\n",
"Write a summary of the conversation for My daughter 5 years old:\n",
"\u001b[0m\n",
"\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001B[1m> Finished chain.\u001B[0m\n",
"\n",
"Observation: \u001b[33;1m\u001b[1;3m\n",
"The conversation was about ChatGPT, an artificial intelligence chatbot. It was created by OpenAI and can send and receive images while chatting.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.\u001b[0m\n",
"Observation: \u001B[33;1m\u001B[1;3m\n",
"The conversation was about ChatGPT, an artificial intelligence chatbot. It was created by OpenAI and can send and receive images while chatting.\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot created by OpenAI that can send and receive images while chatting.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@ -256,8 +273,8 @@
}
],
"source": [
"agent_chain.run(\n",
" input=\"Thanks. Summarize the conversation, for my daughter 5 years old.\"\n",
"agent_executor.invoke(\n",
" {\"input\": \"Thanks. Summarize the conversation, for my daughter 5 years old.\"}\n",
")"
]
},
@ -289,9 +306,17 @@
}
],
"source": [
"print(agent_chain.memory.buffer)"
"print(agent_executor.memory.buffer)"
]
},
{
"cell_type": "markdown",
"id": "84ca95c30e262e00",
"metadata": {
"collapsed": false
},
"source": []
},
{
"cell_type": "markdown",
"id": "cc3d0aa4",
@ -340,25 +365,9 @@
" ),\n",
"]\n",
"\n",
"prefix = \"\"\"Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:\"\"\"\n",
"suffix = \"\"\"Begin!\"\n",
"\n",
"{chat_history}\n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\"\n",
"\n",
"prompt = ZeroShotAgent.create_prompt(\n",
" tools,\n",
" prefix=prefix,\n",
" suffix=suffix,\n",
" input_variables=[\"input\", \"chat_history\", \"agent_scratchpad\"],\n",
")\n",
"\n",
"llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)\n",
"agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)\n",
"agent_chain = AgentExecutor.from_agent_and_tools(\n",
" agent=agent, tools=tools, verbose=True, memory=memory\n",
")"
"prompt = hub.pull(\"hwchase17/react\")\n",
"agent = create_react_agent(model, tools, prompt)\n",
"agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)"
]
},
{
@ -373,15 +382,15 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I should research ChatGPT to answer this question.\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I should research ChatGPT to answer this question.\n",
"Action: Search\n",
"Action Input: \"ChatGPT\"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001b[0m\n",
"Action Input: \"ChatGPT\"\u001B[0m\n",
"Observation: \u001B[36;1m\u001B[1;3mNov 30, 2022 ... We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... ChatGPT. We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer ... Feb 2, 2023 ... ChatGPT, the popular chatbot from OpenAI, is estimated to have reached 100 million monthly active users in January, just two months after ... 2 days ago ... ChatGPT recently launched a new version of its own plagiarism detection tool, with hopes that it will squelch some of the criticism around how ... An API for accessing new AI models developed by OpenAI. Feb 19, 2023 ... ChatGPT is an AI chatbot system that OpenAI released in November to show off and test what a very large, powerful AI system can accomplish. You ... ChatGPT is fine-tuned from GPT-3.5, a language model trained to produce text. ChatGPT was optimized for dialogue by using Reinforcement Learning with Human ... 3 days ago ... Visual ChatGPT connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting. Dec 1, 2022 ... ChatGPT is a natural language processing tool driven by AI technology that allows you to have human-like conversations and much more with a ...\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@ -396,7 +405,7 @@
}
],
"source": [
"agent_chain.run(input=\"What is ChatGPT?\")"
"agent_executor.invoke({\"input\": \"What is ChatGPT?\"})"
]
},
{
@ -411,15 +420,15 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to find out who developed ChatGPT\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I need to find out who developed ChatGPT\n",
"Action: Search\n",
"Action Input: Who developed ChatGPT\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
"Final Answer: ChatGPT was developed by OpenAI.\u001b[0m\n",
"Action Input: Who developed ChatGPT\u001B[0m\n",
"Observation: \u001B[36;1m\u001B[1;3mChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large ... Feb 15, 2023 ... Who owns Chat GPT? Chat GPT is owned and developed by AI research and deployment company, OpenAI. The organization is headquartered in San ... Feb 8, 2023 ... ChatGPT is an AI chatbot developed by San Francisco-based startup OpenAI. OpenAI was co-founded in 2015 by Elon Musk and Sam Altman and is ... Dec 7, 2022 ... ChatGPT is an AI chatbot designed and developed by OpenAI. The bot works by generating text responses based on human-user input, like questions ... Jan 12, 2023 ... In 2019, Microsoft invested $1 billion in OpenAI, the tiny San Francisco company that designed ChatGPT. And in the years since, it has quietly ... Jan 25, 2023 ... The inside story of ChatGPT: How OpenAI founder Sam Altman built the world's hottest technology with billions from Microsoft. Dec 3, 2022 ... ChatGPT went viral on social media for its ability to do anything from code to write essays. · The company that created the AI chatbot has a ... Jan 17, 2023 ... While many Americans were nursing hangovers on New Year's Day, 22-year-old Edward Tian was working feverishly on a new app to combat misuse ... ChatGPT is a language model created by OpenAI, an artificial intelligence research laboratory consisting of a team of researchers and engineers focused on ... 1 day ago ... Everyone is talking about ChatGPT, developed by OpenAI. This is such a great tool that has helped to make AI more accessible to a wider ...\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer\n",
"Final Answer: ChatGPT was developed by OpenAI.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@ -434,7 +443,7 @@
}
],
"source": [
"agent_chain.run(input=\"Who developed it?\")"
"agent_executor.invoke({\"input\": \"Who developed it?\"})"
]
},
{
@ -449,14 +458,14 @@
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
"\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
"\u001B[32;1m\u001B[1;3mThought: I need to simplify the conversation for a 5 year old.\n",
"Action: Summary\n",
"Action Input: My daughter 5 years old\u001b[0m\n",
"Action Input: My daughter 5 years old\u001B[0m\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"\u001B[1m> Entering new LLMChain chain...\u001B[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThis is a conversation between a human and a bot:\n",
"\u001B[32;1m\u001B[1;3mThis is a conversation between a human and a bot:\n",
"\n",
"Human: What is ChatGPT?\n",
"AI: ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3 family of large language models and is optimized for dialogue by using Reinforcement Learning with Human-in-the-Loop. It is also capable of sending and receiving images during chatting.\n",
@ -464,16 +473,16 @@
"AI: ChatGPT was developed by OpenAI.\n",
"\n",
"Write a summary of the conversation for My daughter 5 years old:\n",
"\u001b[0m\n",
"\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\u001B[1m> Finished chain.\u001B[0m\n",
"\n",
"Observation: \u001b[33;1m\u001b[1;3m\n",
"The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.\u001b[0m\n",
"Observation: \u001B[33;1m\u001B[1;3m\n",
"The conversation was about ChatGPT, an artificial intelligence chatbot developed by OpenAI. It is designed to have conversations with humans and can also send and receive images.\u001B[0m\n",
"Thought:\u001B[32;1m\u001B[1;3m I now know the final answer.\n",
"Final Answer: ChatGPT is an artificial intelligence chatbot developed by OpenAI that can have conversations with humans and send and receive images.\u001B[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
"\u001B[1m> Finished chain.\u001B[0m\n"
]
},
{
@ -488,8 +497,8 @@
}
],
"source": [
"agent_chain.run(\n",
" input=\"Thanks. Summarize the conversation, for my daughter 5 years old.\"\n",
"agent_executor.invoke(\n",
" {\"input\": \"Thanks. Summarize the conversation, for my daughter 5 years old.\"}\n",
")"
]
},
@ -524,7 +533,7 @@
}
],
"source": [
"print(agent_chain.memory.buffer)"
"print(agent_executor.memory.buffer)"
]
}
],

@ -647,7 +647,7 @@ Sometimes you may not have the luxury of using OpenAI or other service-hosted la
import logging
import torch
from transformers import AutoTokenizer, GPT2TokenizerFast, pipeline, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from langchain_community.llms import HuggingFacePipeline
from langchain_huggingface import HuggingFacePipeline
# Note: This model requires a large GPU, e.g. an 80GB A100. See documentation for other ways to run private non-OpenAI models.
model_id = "google/flan-ul2"
@ -992,7 +992,7 @@ Now that you have some examples (with manually corrected output SQL), you can do
```python
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector
from langchain_community.vectorstores import Chroma

@ -0,0 +1,199 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "c48812ed-35bd-4fbe-9a2c-6c7335e5645e",
"metadata": {},
"outputs": [],
"source": [
"from langchain_anthropic import ChatAnthropic\n",
"from langchain_core.runnables import ConfigurableField\n",
"from langchain_core.tools import tool\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"@tool\n",
"def multiply(x: float, y: float) -> float:\n",
" \"\"\"Multiply 'x' times 'y'.\"\"\"\n",
" return x * y\n",
"\n",
"\n",
"@tool\n",
"def exponentiate(x: float, y: float) -> float:\n",
" \"\"\"Raise 'x' to the 'y'.\"\"\"\n",
" return x**y\n",
"\n",
"\n",
"@tool\n",
"def add(x: float, y: float) -> float:\n",
" \"\"\"Add 'x' and 'y'.\"\"\"\n",
" return x + y\n",
"\n",
"\n",
"tools = [multiply, exponentiate, add]\n",
"\n",
"gpt35 = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0).bind_tools(tools)\n",
"claude3 = ChatAnthropic(model=\"claude-3-sonnet-20240229\").bind_tools(tools)\n",
"llm_with_tools = gpt35.configurable_alternatives(\n",
" ConfigurableField(id=\"llm\"), default_key=\"gpt35\", claude3=claude3\n",
")"
]
},
{
"cell_type": "markdown",
"id": "9c186263-1b98-4cb2-b6d1-71f65eb0d811",
"metadata": {},
"source": [
"# LangGraph"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "28fc2c60-7dbc-428a-8983-1a6a15ea30d2",
"metadata": {},
"outputs": [],
"source": [
"import operator\n",
"from typing import Annotated, Sequence, TypedDict\n",
"\n",
"from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage\n",
"from langchain_core.runnables import RunnableLambda\n",
"from langgraph.graph import END, StateGraph\n",
"\n",
"\n",
"class AgentState(TypedDict):\n",
" messages: Annotated[Sequence[BaseMessage], operator.add]\n",
"\n",
"\n",
"def should_continue(state):\n",
" return \"continue\" if state[\"messages\"][-1].tool_calls else \"end\"\n",
"\n",
"\n",
"def call_model(state, config):\n",
" return {\"messages\": [llm_with_tools.invoke(state[\"messages\"], config=config)]}\n",
"\n",
"\n",
"def _invoke_tool(tool_call):\n",
" tool = {tool.name: tool for tool in tools}[tool_call[\"name\"]]\n",
" return ToolMessage(tool.invoke(tool_call[\"args\"]), tool_call_id=tool_call[\"id\"])\n",
"\n",
"\n",
"tool_executor = RunnableLambda(_invoke_tool)\n",
"\n",
"\n",
"def call_tools(state):\n",
" last_message = state[\"messages\"][-1]\n",
" return {\"messages\": tool_executor.batch(last_message.tool_calls)}\n",
"\n",
"\n",
"workflow = StateGraph(AgentState)\n",
"workflow.add_node(\"agent\", call_model)\n",
"workflow.add_node(\"action\", call_tools)\n",
"workflow.set_entry_point(\"agent\")\n",
"workflow.add_conditional_edges(\n",
" \"agent\",\n",
" should_continue,\n",
" {\n",
" \"continue\": \"action\",\n",
" \"end\": END,\n",
" },\n",
")\n",
"workflow.add_edge(\"action\", \"agent\")\n",
"graph = workflow.compile()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3710e724-2595-4625-ba3a-effb81e66e4a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'messages': [HumanMessage(content=\"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"),\n",
" AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_6yMU2WsS4Bqgi1WxFHxtfJRc', 'function': {'arguments': '{\"x\": 8, \"y\": 2.743}', 'name': 'exponentiate'}, 'type': 'function'}, {'id': 'call_GAL3dQiKFF9XEV0RrRLPTvVp', 'function': {'arguments': '{\"x\": 17.24, \"y\": -918.1241}', 'name': 'add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 58, 'prompt_tokens': 168, 'total_tokens': 226}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-528302fc-7acf-4c11-82c4-119ccf40c573-0', tool_calls=[{'name': 'exponentiate', 'args': {'x': 8, 'y': 2.743}, 'id': 'call_6yMU2WsS4Bqgi1WxFHxtfJRc'}, {'name': 'add', 'args': {'x': 17.24, 'y': -918.1241}, 'id': 'call_GAL3dQiKFF9XEV0RrRLPTvVp'}]),\n",
" ToolMessage(content='300.03770462067547', tool_call_id='call_6yMU2WsS4Bqgi1WxFHxtfJRc'),\n",
" ToolMessage(content='-900.8841', tool_call_id='call_GAL3dQiKFF9XEV0RrRLPTvVp'),\n",
" AIMessage(content='The result of \\\\(3 + 5^{2.743}\\\\) is approximately 300.04, and the result of \\\\(17.24 - 918.1241\\\\) is approximately -900.88.', response_metadata={'token_usage': {'completion_tokens': 44, 'prompt_tokens': 251, 'total_tokens': 295}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'stop', 'logprobs': None}, id='run-d1161669-ed09-4b18-94bd-6d8530df5aa8-0')]}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graph.invoke(\n",
" {\n",
" \"messages\": [\n",
" HumanMessage(\n",
" \"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"\n",
" )\n",
" ]\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "073c074e-d722-42e0-85ec-c62c079207e4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'messages': [HumanMessage(content=\"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"),\n",
" AIMessage(content=[{'text': \"Okay, let's break this down into two parts:\", 'type': 'text'}, {'id': 'toolu_01DEhqcXkXTtzJAiZ7uMBeDC', 'input': {'x': 3, 'y': 5}, 'name': 'add', 'type': 'tool_use'}], response_metadata={'id': 'msg_01AkLGH8sxMHaH15yewmjwkF', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 450, 'output_tokens': 81}}, id='run-f35bfae8-8ded-4f8a-831b-0940d6ad16b6-0', tool_calls=[{'name': 'add', 'args': {'x': 3, 'y': 5}, 'id': 'toolu_01DEhqcXkXTtzJAiZ7uMBeDC'}]),\n",
" ToolMessage(content='8.0', tool_call_id='toolu_01DEhqcXkXTtzJAiZ7uMBeDC'),\n",
" AIMessage(content=[{'id': 'toolu_013DyMLrvnrto33peAKMGMr1', 'input': {'x': 8.0, 'y': 2.743}, 'name': 'exponentiate', 'type': 'tool_use'}], response_metadata={'id': 'msg_015Fmp8aztwYcce2JDAFfce3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 545, 'output_tokens': 75}}, id='run-48aaeeeb-a1e5-48fd-a57a-6c3da2907b47-0', tool_calls=[{'name': 'exponentiate', 'args': {'x': 8.0, 'y': 2.743}, 'id': 'toolu_013DyMLrvnrto33peAKMGMr1'}]),\n",
" ToolMessage(content='300.03770462067547', tool_call_id='toolu_013DyMLrvnrto33peAKMGMr1'),\n",
" AIMessage(content=[{'text': 'So 3 plus 5 raised to the 2.743 power is 300.04.\\n\\nFor the second part:', 'type': 'text'}, {'id': 'toolu_01UTmMrGTmLpPrPCF1rShN46', 'input': {'x': 17.24, 'y': -918.1241}, 'name': 'add', 'type': 'tool_use'}], response_metadata={'id': 'msg_015TkhfRBENPib2RWAxkieH6', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 638, 'output_tokens': 105}}, id='run-45fb62e3-d102-4159-881d-241c5dbadeed-0', tool_calls=[{'name': 'add', 'args': {'x': 17.24, 'y': -918.1241}, 'id': 'toolu_01UTmMrGTmLpPrPCF1rShN46'}]),\n",
" ToolMessage(content='-900.8841', tool_call_id='toolu_01UTmMrGTmLpPrPCF1rShN46'),\n",
" AIMessage(content='Therefore, 17.24 - 918.1241 = -900.8841', response_metadata={'id': 'msg_01LgKnRuUcSyADCpxv9tPoYD', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 759, 'output_tokens': 24}}, id='run-1008254e-ccd1-497c-8312-9550dd77bd08-0')]}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graph.invoke(\n",
" {\n",
" \"messages\": [\n",
" HumanMessage(\n",
" \"what's 3 plus 5 raised to the 2.743. also what's 17.24 - 918.1241\"\n",
" )\n",
" ]\n",
" },\n",
" config={\"configurable\": {\"llm\": \"claude3\"}},\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -3811,7 +3811,7 @@
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model_name=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
"model = ChatOpenAI(model=\"gpt-3.5-turbo-0613\") # switch to 'gpt-4'\n",
"qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)"
]
},

@ -84,7 +84,7 @@
" Applies the chatmodel to the message history\n",
" and returns the message string\n",
" \"\"\"\n",
" message = self.model(\n",
" message = self.model.invoke(\n",
" [\n",
" self.system_message,\n",
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",
@ -424,7 +424,7 @@
" DialogueAgentWithTools(\n",
" name=name,\n",
" system_message=SystemMessage(content=system_message),\n",
" model=ChatOpenAI(model_name=\"gpt-4\", temperature=0.2),\n",
" model=ChatOpenAI(model=\"gpt-4\", temperature=0.2),\n",
" tool_names=tools,\n",
" top_k_results=2,\n",
" )\n",

@ -70,7 +70,7 @@
" Applies the chatmodel to the message history\n",
" and returns the message string\n",
" \"\"\"\n",
" message = self.model(\n",
" message = self.model.invoke(\n",
" [\n",
" self.system_message,\n",
" HumanMessage(content=\"\\n\".join(self.message_history + [self.prefix])),\n",

@ -601,7 +601,7 @@
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"llm = ChatOpenAI(model_name=\"gpt-4\", temperature=0)"
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)"
]
},
{

1
docs/.gitignore vendored

@ -1,2 +1,3 @@
/.quarto/
src/supabase.d.ts
build

@ -1,24 +0,0 @@
#!/usr/bin/env bash
set -o errexit
set -o nounset
set -o pipefail
set -o xtrace
SCRIPT_DIR="$(cd "$(dirname "$0")"; pwd)"
cd "${SCRIPT_DIR}"
mkdir -p ../_dist
rsync -ruv --exclude node_modules --exclude api_reference --exclude .venv --exclude .docusaurus . ../_dist
cd ../_dist
poetry run python scripts/model_feat_table.py
cp ../cookbook/README.md src/pages/cookbook.mdx
mkdir -p docs/templates
cp ../templates/docs/INDEX.md docs/templates/index.md
poetry run python scripts/copy_templates.py
wget -q https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O docs/langserve.md
wget -q https://raw.githubusercontent.com/langchain-ai/langgraph/main/README.md -O docs/langgraph.md
yarn
poetry run quarto preview docs

@ -0,0 +1,85 @@
# we build the docs in these stages:
# 1. install vercel and python dependencies
# 2. copy files from "source dir" to "intermediate dir"
# 2. generate files like model feat table, etc in "intermediate dir"
# 3. copy files to their right spots (e.g. langserve readme) in "intermediate dir"
# 4. build the docs from "intermediate dir" to "output dir"
SOURCE_DIR = docs/
INTERMEDIATE_DIR = build/intermediate/docs
OUTPUT_NEW_DIR = build/output-new
OUTPUT_NEW_DOCS_DIR = $(OUTPUT_NEW_DIR)/docs
PYTHON = .venv/bin/python
PARTNER_DEPS_LIST := $(shell find ../libs/partners -mindepth 1 -maxdepth 1 -type d -exec test -e "{}/pyproject.toml" \; -print | grep -vE "airbyte|ibm" | tr '\n' ' ')
PORT ?= 3001
clean:
rm -rf build
install-vercel-deps:
yum -y update
yum install gcc bzip2-devel libffi-devel zlib-devel wget tar gzip rsync -y
install-py-deps:
python3 -m venv .venv
$(PYTHON) -m pip install --upgrade pip
$(PYTHON) -m pip install --upgrade uv
$(PYTHON) -m uv pip install -r vercel_requirements.txt
$(PYTHON) -m uv pip install --editable $(PARTNER_DEPS_LIST)
generate-files:
mkdir -p $(INTERMEDIATE_DIR)
cp -r $(SOURCE_DIR)/* $(INTERMEDIATE_DIR)
mkdir -p $(INTERMEDIATE_DIR)/templates
cp ../templates/docs/INDEX.md $(INTERMEDIATE_DIR)/templates/index.md
cp ../cookbook/README.md $(INTERMEDIATE_DIR)/cookbook.mdx
$(PYTHON) scripts/model_feat_table.py $(INTERMEDIATE_DIR)
$(PYTHON) scripts/copy_templates.py $(INTERMEDIATE_DIR)
wget -q https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O $(INTERMEDIATE_DIR)/langserve.md
$(PYTHON) scripts/resolve_local_links.py $(INTERMEDIATE_DIR)/langserve.md https://github.com/langchain-ai/langserve/tree/main/
wget -q https://raw.githubusercontent.com/langchain-ai/langgraph/main/README.md -O $(INTERMEDIATE_DIR)/langgraph.md
$(PYTHON) scripts/resolve_local_links.py $(INTERMEDIATE_DIR)/langgraph.md https://github.com/langchain-ai/langgraph/tree/main/
copy-infra:
mkdir -p $(OUTPUT_NEW_DIR)
cp -r src $(OUTPUT_NEW_DIR)
cp vercel.json $(OUTPUT_NEW_DIR)
cp babel.config.js $(OUTPUT_NEW_DIR)
cp -r data $(OUTPUT_NEW_DIR)
cp docusaurus.config.js $(OUTPUT_NEW_DIR)
cp package.json $(OUTPUT_NEW_DIR)
cp sidebars.js $(OUTPUT_NEW_DIR)
cp -r static $(OUTPUT_NEW_DIR)
cp yarn.lock $(OUTPUT_NEW_DIR)
render:
$(PYTHON) scripts/notebook_convert.py $(INTERMEDIATE_DIR) $(OUTPUT_NEW_DOCS_DIR)
md-sync:
rsync -avm --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR)
generate-references:
$(PYTHON) scripts/generate_api_reference_links.py --docs_dir $(OUTPUT_NEW_DOCS_DIR)
build: install-py-deps generate-files copy-infra render md-sync
vercel-build: install-vercel-deps build generate-references
rm -rf docs
mv $(OUTPUT_NEW_DOCS_DIR) docs
rm -rf build
yarn run docusaurus build
mv build v0.2
mkdir build
mv v0.2 build
mv build/v0.2/404.html build
start:
cd $(OUTPUT_NEW_DIR) && yarn && yarn start --port=$(PORT)

@ -12,7 +12,8 @@ pre {
}
}
#my-component-root *, #headlessui-portal-root * {
#my-component-root *,
#headlessui-portal-root * {
z-index: 10000;
}

@ -359,9 +359,14 @@ def main(dirs: Optional[list] = None) -> None:
dirs = [
dir_
for dir_ in os.listdir(ROOT_DIR / "libs")
if dir_ not in ("cli", "partners")
if dir_ not in ("cli", "partners", "standard-tests")
]
dirs += [
dir_
for dir_ in os.listdir(ROOT_DIR / "libs" / "partners")
if os.path.isdir(dir_)
and "pyproject.toml" in os.listdir(ROOT_DIR / "libs" / "partners" / dir_)
]
dirs += os.listdir(ROOT_DIR / "libs" / "partners")
for dir_ in dirs:
# Skip any hidden directories
# Some of these could be present by mistake in the code base

File diff suppressed because one or more lines are too long

@ -1398,3 +1398,20 @@ table.sk-sponsor-table td {
.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */
.highlight .il { color: #208050 } /* Literal.Number.Integer.Long */
/** Custom styles overriding certain values */
div.sk-sidebar-toc-wrapper {
width: unset;
overflow-x: auto;
}
div.sk-sidebar-toc-wrapper > [aria-label="rellinks"] {
position: sticky;
left: 0;
}
.navbar-nav .dropdown-menu {
max-height: 80vh;
overflow-y: auto;
}

@ -1,76 +0,0 @@
/* eslint-disable prefer-template */
/* eslint-disable no-param-reassign */
// eslint-disable-next-line import/no-extraneous-dependencies
const babel = require("@babel/core");
const path = require("path");
const fs = require("fs");
/**
*
* @param {string|Buffer} content Content of the resource file
* @param {object} [map] SourceMap data consumable by https://github.com/mozilla/source-map
* @param {any} [meta] Meta data, could be anything
*/
async function webpackLoader(content, map, meta) {
const cb = this.async();
if (!this.resourcePath.endsWith(".ts")) {
cb(null, JSON.stringify({ content, imports: [] }), map, meta);
return;
}
try {
const result = await babel.parseAsync(content, {
sourceType: "module",
filename: this.resourcePath,
});
const imports = [];
result.program.body.forEach((node) => {
if (node.type === "ImportDeclaration") {
const source = node.source.value;
if (!source.startsWith("langchain")) {
return;
}
node.specifiers.forEach((specifier) => {
if (specifier.type === "ImportSpecifier") {
const local = specifier.local.name;
const imported = specifier.imported.name;
imports.push({ local, imported, source });
} else {
throw new Error("Unsupported import type");
}
});
}
});
imports.forEach((imp) => {
const { imported, source } = imp;
const moduleName = source.split("/").slice(1).join("_");
const docsPath = path.resolve(__dirname, "docs", "api", moduleName);
const available = fs.readdirSync(docsPath, { withFileTypes: true });
const found = available.find(
(dirent) =>
dirent.isDirectory() &&
fs.existsSync(path.resolve(docsPath, dirent.name, imported + ".md"))
);
if (found) {
imp.docs =
"/" + path.join("docs", "api", moduleName, found.name, imported);
} else {
throw new Error(
`Could not find docs for ${source}.${imported} in docs/api/`
);
}
});
cb(null, JSON.stringify({ content, imports }), map, meta);
} catch (err) {
cb(err);
}
}
module.exports = webpackLoader;

File diff suppressed because it is too large Load Diff

@ -0,0 +1,519 @@
# arXiv
LangChain implements the latest research in the field of Natural Language Processing.
This page contains `arXiv` papers referenced in the LangChain Documentation and API Reference.
## Summary
| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation and API Reference |
|------------------|---------|-------------------|-------------------------|
| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023-07-06 | `Docs:` [docs/modules/data_connection/retrievers/long_context_reorder](https://python.langchain.com/docs/modules/data_connection/retrievers/long_context_reorder)
| `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023-05-15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot)
| `2305.06983v2` [Active Retrieval Augmented Generation](http://arxiv.org/abs/2305.06983v2) | Zhengbao Jiang, Frank F. Xu, Luyu Gao, et al. | 2023-05-11 | `Docs:` [docs/modules/chains](https://python.langchain.com/docs/modules/chains)
| `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023-03-30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents)
| `2303.08774v6` [GPT-4 Technical Report](http://arxiv.org/abs/2303.08774v6) | OpenAI, Josh Achiam, Steven Adler, et al. | 2023-03-15 | `Docs:` [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
| `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023-01-24 | `API:` [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community.llms...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI)
| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022-12-20 | `Docs:` [docs/use_cases/query_analysis/techniques/hyde](https://python.langchain.com/docs/use_cases/query_analysis/techniques/hyde), `API:` [langchain.chains...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022-12-15 | `Docs:` [docs/guides/productionization/evaluation/string/criteria_eval_chain](https://python.langchain.com/docs/guides/productionization/evaluation/string/criteria_eval_chain)
| `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022-12-12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
| `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022-11-25 | `API:` [langchain_core.example_selectors...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
| `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022-11-18 | `API:` [langchain_experimental.pal_chain...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain)
| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022-09-22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
| `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022-05-25 | `API:` [langchain_community.embeddings...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022-03-15 | `Docs:` [docs/use_cases/sql/quickstart](https://python.langchain.com/docs/use_cases/sql/quickstart), `API:` [langchain_community.utilities...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
| `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022-02-01 | `API:` [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021-02-26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
| `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019-09-11 | `API:` [langchain_community.llms...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
| `1908.10084v1` [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](http://arxiv.org/abs/1908.10084v1) | Nils Reimers, Iryna Gurevych | 2019-08-27 | `Docs:` [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers)
## Lost in the Middle: How Language Models Use Long Contexts
- **arXiv id:** 2307.03172v3
- **Title:** Lost in the Middle: How Language Models Use Long Contexts
- **Authors:** Nelson F. Liu, Kevin Lin, John Hewitt, et al.
- **Published Date:** 2023-07-06
- **URL:** http://arxiv.org/abs/2307.03172v3
- **LangChain Documentation:** [docs/modules/data_connection/retrievers/long_context_reorder](https://python.langchain.com/docs/modules/data_connection/retrievers/long_context_reorder)
**Abstract:** While recent language models have the ability to take long contexts as input,
relatively little is known about how well they use longer context. We analyze
the performance of language models on two tasks that require identifying
relevant information in their input contexts: multi-document question answering
and key-value retrieval. We find that performance can degrade significantly
when changing the position of relevant information, indicating that current
language models do not robustly make use of information in long input contexts.
In particular, we observe that performance is often highest when relevant
information occurs at the beginning or end of the input context, and
significantly degrades when models must access relevant information in the
middle of long contexts, even for explicitly long-context models. Our analysis
provides a better understanding of how language models use their input context
and provides new evaluation protocols for future long-context language models.
## Large Language Model Guided Tree-of-Thought
- **arXiv id:** 2305.08291v1
- **Title:** Large Language Model Guided Tree-of-Thought
- **Authors:** Jieyi Long
- **Published Date:** 2023-05-15
- **URL:** http://arxiv.org/abs/2305.08291v1
- **LangChain API Reference:** [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot)
**Abstract:** In this paper, we introduce the Tree-of-Thought (ToT) framework, a novel
approach aimed at improving the problem-solving capabilities of auto-regressive
large language models (LLMs). The ToT technique is inspired by the human mind's
approach for solving complex reasoning tasks through trial and error. In this
process, the human mind explores the solution space through a tree-like thought
process, allowing for backtracking when necessary. To implement ToT as a
software system, we augment an LLM with additional modules including a prompter
agent, a checker module, a memory module, and a ToT controller. In order to
solve a given problem, these modules engage in a multi-round conversation with
the LLM. The memory module records the conversation and state history of the
problem solving process, which allows the system to backtrack to the previous
steps of the thought-process and explore other directions from there. To verify
the effectiveness of the proposed technique, we implemented a ToT-based solver
for the Sudoku Puzzle. Experimental results show that the ToT framework can
significantly increase the success rate of Sudoku puzzle solving. Our
implementation of the ToT-based Sudoku solver is available on GitHub:
\url{https://github.com/jieyilong/tree-of-thought-puzzle-solver}.
## Active Retrieval Augmented Generation
- **arXiv id:** 2305.06983v2
- **Title:** Active Retrieval Augmented Generation
- **Authors:** Zhengbao Jiang, Frank F. Xu, Luyu Gao, et al.
- **Published Date:** 2023-05-11
- **URL:** http://arxiv.org/abs/2305.06983v2
- **LangChain Documentation:** [docs/modules/chains](https://python.langchain.com/docs/modules/chains)
**Abstract:** Despite the remarkable ability of large language models (LMs) to comprehend
and generate language, they have a tendency to hallucinate and create factually
inaccurate output. Augmenting LMs by retrieving information from external
knowledge resources is one promising solution. Most existing retrieval
augmented LMs employ a retrieve-and-generate setup that only retrieves
information once based on the input. This is limiting, however, in more general
scenarios involving generation of long texts, where continually gathering
information throughout generation is essential. In this work, we provide a
generalized view of active retrieval augmented generation, methods that
actively decide when and what to retrieve across the course of the generation.
We propose Forward-Looking Active REtrieval augmented generation (FLARE), a
generic method which iteratively uses a prediction of the upcoming sentence to
anticipate future content, which is then utilized as a query to retrieve
relevant documents to regenerate the sentence if it contains low-confidence
tokens. We test FLARE along with baselines comprehensively over 4 long-form
knowledge-intensive generation tasks/datasets. FLARE achieves superior or
competitive performance on all tasks, demonstrating the effectiveness of our
method. Code and datasets are available at https://github.com/jzbjyb/FLARE.
## HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
- **arXiv id:** 2303.17580v4
- **Title:** HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
- **Authors:** Yongliang Shen, Kaitao Song, Xu Tan, et al.
- **Published Date:** 2023-03-30
- **URL:** http://arxiv.org/abs/2303.17580v4
- **LangChain API Reference:** [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents)
**Abstract:** Solving complicated AI tasks with different domains and modalities is a key
step toward artificial general intelligence. While there are numerous AI models
available for various domains and modalities, they cannot handle complicated AI
tasks autonomously. Considering large language models (LLMs) have exhibited
exceptional abilities in language understanding, generation, interaction, and
reasoning, we advocate that LLMs could act as a controller to manage existing
AI models to solve complicated AI tasks, with language serving as a generic
interface to empower this. Based on this philosophy, we present HuggingGPT, an
LLM-powered agent that leverages LLMs (e.g., ChatGPT) to connect various AI
models in machine learning communities (e.g., Hugging Face) to solve AI tasks.
Specifically, we use ChatGPT to conduct task planning when receiving a user
request, select models according to their function descriptions available in
Hugging Face, execute each subtask with the selected AI model, and summarize
the response according to the execution results. By leveraging the strong
language capability of ChatGPT and abundant AI models in Hugging Face,
HuggingGPT can tackle a wide range of sophisticated AI tasks spanning different
modalities and domains and achieve impressive results in language, vision,
speech, and other challenging tasks, which paves a new way towards the
realization of artificial general intelligence.
## GPT-4 Technical Report
- **arXiv id:** 2303.08774v6
- **Title:** GPT-4 Technical Report
- **Authors:** OpenAI, Josh Achiam, Steven Adler, et al.
- **Published Date:** 2023-03-15
- **URL:** http://arxiv.org/abs/2303.08774v6
- **LangChain Documentation:** [docs/integrations/vectorstores/mongodb_atlas](https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas)
**Abstract:** We report the development of GPT-4, a large-scale, multimodal model which can
accept image and text inputs and produce text outputs. While less capable than
humans in many real-world scenarios, GPT-4 exhibits human-level performance on
various professional and academic benchmarks, including passing a simulated bar
exam with a score around the top 10% of test takers. GPT-4 is a
Transformer-based model pre-trained to predict the next token in a document.
The post-training alignment process results in improved performance on measures
of factuality and adherence to desired behavior. A core component of this
project was developing infrastructure and optimization methods that behave
predictably across a wide range of scales. This allowed us to accurately
predict some aspects of GPT-4's performance based on models trained with no
more than 1/1,000th the compute of GPT-4.
## A Watermark for Large Language Models
- **arXiv id:** 2301.10226v4
- **Title:** A Watermark for Large Language Models
- **Authors:** John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al.
- **Published Date:** 2023-01-24
- **URL:** http://arxiv.org/abs/2301.10226v4
- **LangChain API Reference:** [langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI)
**Abstract:** Potential harms of large language models can be mitigated by watermarking
model output, i.e., embedding signals into generated text that are invisible to
humans but algorithmically detectable from a short span of tokens. We propose a
watermarking framework for proprietary language models. The watermark can be
embedded with negligible impact on text quality, and can be detected using an
efficient open-source algorithm without access to the language model API or
parameters. The watermark works by selecting a randomized set of "green" tokens
before a word is generated, and then softly promoting use of green tokens
during sampling. We propose a statistical test for detecting the watermark with
interpretable p-values, and derive an information-theoretic framework for
analyzing the sensitivity of the watermark. We test the watermark using a
multi-billion parameter model from the Open Pretrained Transformer (OPT)
family, and discuss robustness and security.
## Precise Zero-Shot Dense Retrieval without Relevance Labels
- **arXiv id:** 2212.10496v1
- **Title:** Precise Zero-Shot Dense Retrieval without Relevance Labels
- **Authors:** Luyu Gao, Xueguang Ma, Jimmy Lin, et al.
- **Published Date:** 2022-12-20
- **URL:** http://arxiv.org/abs/2212.10496v1
- **LangChain Documentation:** [docs/use_cases/query_analysis/techniques/hyde](https://python.langchain.com/docs/use_cases/query_analysis/techniques/hyde)
- **LangChain API Reference:** [langchain.chains.hyde.base.HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder)
**Abstract:** While dense retrieval has been shown effective and efficient across tasks and
languages, it remains difficult to create effective fully zero-shot dense
retrieval systems when no relevance label is available. In this paper, we
recognize the difficulty of zero-shot learning and encoding relevance. Instead,
we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a
query, HyDE first zero-shot instructs an instruction-following language model
(e.g. InstructGPT) to generate a hypothetical document. The document captures
relevance patterns but is unreal and may contain false details. Then, an
unsupervised contrastively learned encoder~(e.g. Contriever) encodes the
document into an embedding vector. This vector identifies a neighborhood in the
corpus embedding space, where similar real documents are retrieved based on
vector similarity. This second step ground the generated document to the actual
corpus, with the encoder's dense bottleneck filtering out the incorrect
details. Our experiments show that HyDE significantly outperforms the
state-of-the-art unsupervised dense retriever Contriever and shows strong
performance comparable to fine-tuned retrievers, across various tasks (e.g. web
search, QA, fact verification) and languages~(e.g. sw, ko, ja).
## Constitutional AI: Harmlessness from AI Feedback
- **arXiv id:** 2212.08073v1
- **Title:** Constitutional AI: Harmlessness from AI Feedback
- **Authors:** Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al.
- **Published Date:** 2022-12-15
- **URL:** http://arxiv.org/abs/2212.08073v1
- **LangChain Documentation:** [docs/guides/productionization/evaluation/string/criteria_eval_chain](https://python.langchain.com/docs/guides/productionization/evaluation/string/criteria_eval_chain)
**Abstract:** As AI systems become more capable, we would like to enlist their help to
supervise other AIs. We experiment with methods for training a harmless AI
assistant through self-improvement, without any human labels identifying
harmful outputs. The only human oversight is provided through a list of rules
or principles, and so we refer to the method as 'Constitutional AI'. The
process involves both a supervised learning and a reinforcement learning phase.
In the supervised phase we sample from an initial model, then generate
self-critiques and revisions, and then finetune the original model on revised
responses. In the RL phase, we sample from the finetuned model, use a model to
evaluate which of the two samples is better, and then train a preference model
from this dataset of AI preferences. We then train with RL using the preference
model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a
result we are able to train a harmless but non-evasive AI assistant that
engages with harmful queries by explaining its objections to them. Both the SL
and RL methods can leverage chain-of-thought style reasoning to improve the
human-judged performance and transparency of AI decision making. These methods
make it possible to control AI behavior more precisely and with far fewer human
labels.
## Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
- **arXiv id:** 2212.07425v3
- **Title:** Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments
- **Authors:** Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al.
- **Published Date:** 2022-12-12
- **URL:** http://arxiv.org/abs/2212.07425v3
- **LangChain API Reference:** [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal)
**Abstract:** The spread of misinformation, propaganda, and flawed argumentation has been
amplified in the Internet era. Given the volume of data and the subtlety of
identifying violations of argumentation norms, supporting information analytics
tasks, like content moderation, with trustworthy methods that can identify
logical fallacies is essential. In this paper, we formalize prior theoretical
work on logical fallacies into a comprehensive three-stage evaluation framework
of detection, coarse-grained, and fine-grained classification. We adapt
existing evaluation datasets for each stage of the evaluation. We employ three
families of robust and explainable methods based on prototype reasoning,
instance-based reasoning, and knowledge injection. The methods combine language
models with background knowledge and explainable mechanisms. Moreover, we
address data sparsity with strategies for data augmentation and curriculum
learning. Our three-stage framework natively consolidates prior datasets and
methods from existing tasks, like propaganda detection, serving as an
overarching evaluation testbed. We extensively evaluate these methods on our
datasets, focusing on their robustness and explainability. Our results provide
insight into the strengths and weaknesses of the methods on different
components and fallacy classes, indicating that fallacy identification is a
challenging task that may require specialized forms of reasoning to capture
various classes. We share our open-source code and data on GitHub to support
further work on logical fallacy identification.
## Complementary Explanations for Effective In-Context Learning
- **arXiv id:** 2211.13892v2
- **Title:** Complementary Explanations for Effective In-Context Learning
- **Authors:** Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al.
- **Published Date:** 2022-11-25
- **URL:** http://arxiv.org/abs/2211.13892v2
- **LangChain API Reference:** [langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector)
**Abstract:** Large language models (LLMs) have exhibited remarkable capabilities in
learning from explanations in prompts, but there has been limited understanding
of exactly how these explanations function or why they are effective. This work
aims to better understand the mechanisms by which explanations are used for
in-context learning. We first study the impact of two different factors on the
performance of prompts with explanations: the computation trace (the way the
solution is decomposed) and the natural language used to express the prompt. By
perturbing explanations on three controlled tasks, we show that both factors
contribute to the effectiveness of explanations. We further study how to form
maximally effective sets of explanations for solving a given test query. We
find that LLMs can benefit from the complementarity of the explanation set:
diverse reasoning skills shown by different exemplars can lead to better
performance. Therefore, we propose a maximal marginal relevance-based exemplar
selection approach for constructing exemplar sets that are both relevant as
well as complementary, which successfully improves the in-context learning
performance across three real-world tasks on multiple LLMs.
## PAL: Program-aided Language Models
- **arXiv id:** 2211.10435v2
- **Title:** PAL: Program-aided Language Models
- **Authors:** Luyu Gao, Aman Madaan, Shuyan Zhou, et al.
- **Published Date:** 2022-11-18
- **URL:** http://arxiv.org/abs/2211.10435v2
- **LangChain API Reference:** [langchain_experimental.pal_chain.base.PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain)
**Abstract:** Large language models (LLMs) have recently demonstrated an impressive ability
to perform arithmetic and symbolic reasoning tasks, when provided with a few
examples at test time ("few-shot prompting"). Much of this success can be
attributed to prompting methods such as "chain-of-thought'', which employ LLMs
for both understanding the problem description by decomposing it into steps, as
well as solving each step of the problem. While LLMs seem to be adept at this
sort of step-by-step decomposition, LLMs often make logical and arithmetic
mistakes in the solution part, even when the problem is decomposed correctly.
In this paper, we present Program-Aided Language models (PAL): a novel approach
that uses the LLM to read natural language problems and generate programs as
the intermediate reasoning steps, but offloads the solution step to a runtime
such as a Python interpreter. With PAL, decomposing the natural language
problem into runnable steps remains the only learning task for the LLM, while
solving is delegated to the interpreter. We demonstrate this synergy between a
neural LLM and a symbolic interpreter across 13 mathematical, symbolic, and
algorithmic reasoning tasks from BIG-Bench Hard and other benchmarks. In all
these natural language reasoning tasks, generating code using an LLM and
reasoning using a Python interpreter leads to more accurate results than much
larger models. For example, PAL using Codex achieves state-of-the-art few-shot
accuracy on the GSM8K benchmark of math word problems, surpassing PaLM-540B
which uses chain-of-thought by absolute 15% top-1. Our code and data are
publicly available at http://reasonwithpal.com/ .
## Deep Lake: a Lakehouse for Deep Learning
- **arXiv id:** 2209.10785v2
- **Title:** Deep Lake: a Lakehouse for Deep Learning
- **Authors:** Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al.
- **Published Date:** 2022-09-22
- **URL:** http://arxiv.org/abs/2209.10785v2
- **LangChain Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake)
**Abstract:** Traditional data lakes provide critical data infrastructure for analytical
workloads by enabling time travel, running SQL queries, ingesting data with
ACID transactions, and visualizing petabyte-scale datasets on cloud storage.
They allow organizations to break down data silos, unlock data-driven
decision-making, improve operational efficiency, and reduce costs. However, as
deep learning usage increases, traditional data lakes are not well-designed for
applications such as natural language processing (NLP), audio processing,
computer vision, and applications involving non-tabular datasets. This paper
presents Deep Lake, an open-source lakehouse for deep learning applications
developed at Activeloop. Deep Lake maintains the benefits of a vanilla data
lake with one key difference: it stores complex data, such as images, videos,
annotations, as well as tabular data, in the form of tensors and rapidly
streams the data over the network to (a) Tensor Query Language, (b) in-browser
visualization engine, or (c) deep learning frameworks without sacrificing GPU
utilization. Datasets stored in Deep Lake can be accessed from PyTorch,
TensorFlow, JAX, and integrate with numerous MLOps tools.
## Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
- **arXiv id:** 2205.12654v1
- **Title:** Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
- **Authors:** Kevin Heffernan, Onur Çelebi, Holger Schwenk
- **Published Date:** 2022-05-25
- **URL:** http://arxiv.org/abs/2205.12654v1
- **LangChain API Reference:** [langchain_community.embeddings.laser.LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings)
**Abstract:** Scaling multilingual representation learning beyond the hundred most frequent
languages is challenging, in particular to cover the long tail of low-resource
languages. A promising approach has been to train one-for-all multilingual
models capable of cross-lingual transfer, but these models often suffer from
insufficient capacity and interference between unrelated languages. Instead, we
move away from this approach and focus on training multiple language (family)
specific representations, but most prominently enable all languages to still be
encoded in the same representational space. To achieve this, we focus on
teacher-student training, allowing all encoders to be mutually compatible for
bitext mining, and enabling fast learning of new languages. We introduce a new
teacher-student training scheme which combines supervised and self-supervised
training, allowing encoders to take advantage of monolingual training data,
which is valuable in the low-resource setting.
Our approach significantly outperforms the original LASER encoder. We study
very low-resource languages and handle 50 African languages, many of which are
not covered by any other model. For these languages, we train sentence
encoders, mine bitexts, and validate the bitexts by training NMT systems.
## Evaluating the Text-to-SQL Capabilities of Large Language Models
- **arXiv id:** 2204.00498v1
- **Title:** Evaluating the Text-to-SQL Capabilities of Large Language Models
- **Authors:** Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau
- **Published Date:** 2022-03-15
- **URL:** http://arxiv.org/abs/2204.00498v1
- **LangChain Documentation:** [docs/use_cases/sql/quickstart](https://python.langchain.com/docs/use_cases/sql/quickstart)
- **LangChain API Reference:** [langchain_community.utilities.sql_database.SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community.utilities.spark_sql.SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL)
**Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex
language model. We find that, without any finetuning, Codex is a strong
baseline on the Spider benchmark; we also analyze the failure modes of Codex in
this setting. Furthermore, we demonstrate on the GeoQuery and Scholar
benchmarks that a small number of in-domain examples provided in the prompt
enables Codex to perform better than state-of-the-art models finetuned on such
few-shot examples.
## Locally Typical Sampling
- **arXiv id:** 2202.00666v5
- **Title:** Locally Typical Sampling
- **Authors:** Clara Meister, Tiago Pimentel, Gian Wiher, et al.
- **Published Date:** 2022-02-01
- **URL:** http://arxiv.org/abs/2202.00666v5
- **LangChain API Reference:** [langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
**Abstract:** Today's probabilistic language generators fall short when it comes to
producing coherent and fluent text despite the fact that the underlying models
perform well under standard metrics, e.g., perplexity. This discrepancy has
puzzled the language generation community for the last few years. In this work,
we posit that the abstraction of natural language generation as a discrete
stochastic process--which allows for an information-theoretic analysis--can
provide new insights into the behavior of probabilistic language generators,
e.g., why high-probability texts can be dull or repetitive. Humans use language
as a means of communicating information, aiming to do so in a simultaneously
efficient and error-minimizing manner; in fact, psycholinguistics research
suggests humans choose each word in a string with this subconscious goal in
mind. We formally define the set of strings that meet this criterion: those for
which each word has an information content close to the expected information
content, i.e., the conditional entropy of our model. We then propose a simple
and efficient procedure for enforcing this criterion when generating from
probabilistic models, which we call locally typical sampling. Automatic and
human evaluations show that, in comparison to nucleus and top-k sampling,
locally typical sampling offers competitive performance (in both abstractive
summarization and story generation) in terms of quality while consistently
reducing degenerate repetitions.
## Learning Transferable Visual Models From Natural Language Supervision
- **arXiv id:** 2103.00020v1
- **Title:** Learning Transferable Visual Models From Natural Language Supervision
- **Authors:** Alec Radford, Jong Wook Kim, Chris Hallacy, et al.
- **Published Date:** 2021-02-26
- **URL:** http://arxiv.org/abs/2103.00020v1
- **LangChain API Reference:** [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip)
**Abstract:** State-of-the-art computer vision systems are trained to predict a fixed set
of predetermined object categories. This restricted form of supervision limits
their generality and usability since additional labeled data is needed to
specify any other visual concept. Learning directly from raw text about images
is a promising alternative which leverages a much broader source of
supervision. We demonstrate that the simple pre-training task of predicting
which caption goes with which image is an efficient and scalable way to learn
SOTA image representations from scratch on a dataset of 400 million (image,
text) pairs collected from the internet. After pre-training, natural language
is used to reference learned visual concepts (or describe new ones) enabling
zero-shot transfer of the model to downstream tasks. We study the performance
of this approach by benchmarking on over 30 different existing computer vision
datasets, spanning tasks such as OCR, action recognition in videos,
geo-localization, and many types of fine-grained object classification. The
model transfers non-trivially to most tasks and is often competitive with a
fully supervised baseline without the need for any dataset specific training.
For instance, we match the accuracy of the original ResNet-50 on ImageNet
zero-shot without needing to use any of the 1.28 million training examples it
was trained on. We release our code and pre-trained model weights at
https://github.com/OpenAI/CLIP.
## CTRL: A Conditional Transformer Language Model for Controllable Generation
- **arXiv id:** 1909.05858v2
- **Title:** CTRL: A Conditional Transformer Language Model for Controllable Generation
- **Authors:** Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al.
- **Published Date:** 2019-09-11
- **URL:** http://arxiv.org/abs/1909.05858v2
- **LangChain API Reference:** [langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint)
**Abstract:** Large-scale language models show promising text generation capabilities, but
users cannot easily control particular aspects of the generated text. We
release CTRL, a 1.63 billion-parameter conditional transformer language model,
trained to condition on control codes that govern style, content, and
task-specific behavior. Control codes were derived from structure that
naturally co-occurs with raw text, preserving the advantages of unsupervised
learning while providing more explicit control over text generation. These
codes also allow CTRL to predict which parts of the training data are most
likely given a sequence. This provides a potential method for analyzing large
amounts of data via model-based source attribution. We have released multiple
full-sized, pretrained versions of CTRL at https://github.com/salesforce/ctrl.
## Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
- **arXiv id:** 1908.10084v1
- **Title:** Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
- **Authors:** Nils Reimers, Iryna Gurevych
- **Published Date:** 2019-08-27
- **URL:** http://arxiv.org/abs/1908.10084v1
- **LangChain Documentation:** [docs/integrations/text_embedding/sentence_transformers](https://python.langchain.com/docs/integrations/text_embedding/sentence_transformers)
**Abstract:** BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new
state-of-the-art performance on sentence-pair regression tasks like semantic
textual similarity (STS). However, it requires that both sentences are fed into
the network, which causes a massive computational overhead: Finding the most
similar pair in a collection of 10,000 sentences requires about 50 million
inference computations (~65 hours) with BERT. The construction of BERT makes it
unsuitable for semantic similarity search as well as for unsupervised tasks
like clustering.
In this publication, we present Sentence-BERT (SBERT), a modification of the
pretrained BERT network that use siamese and triplet network structures to
derive semantically meaningful sentence embeddings that can be compared using
cosine-similarity. This reduces the effort for finding the most similar pair
from 65 hours with BERT / RoBERTa to about 5 seconds with SBERT, while
maintaining the accuracy from BERT.
We evaluate SBERT and SRoBERTa on common STS tasks and transfer learning
tasks, where it outperforms other state-of-the-art sentence embeddings methods.

@ -1,14 +1,10 @@
# Tutorials
## Books and Handbooks
- [Generative AI with LangChain](https://www.amazon.com/Generative-AI-LangChain-language-ChatGPT/dp/1835083463/ref=sr_1_1?crid=1GMOMH0G7GLR&keywords=generative+ai+with+langchain&qid=1703247181&sprefix=%2Caps%2C298&sr=8-1) by [Ben Auffrath](https://www.amazon.com/stores/Ben-Auffarth/author/B08JQKSZ7D?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true), ©️ 2023 Packt Publishing
- [LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
- [LangChain Cheatsheet](https://pub.towardsai.net/langchain-cheatsheet-all-secrets-on-a-single-page-8be26b721cde) by **Ivan Reznikov**
# 3rd Party Tutorials
## Tutorials
### [LangChain v 0.1 by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae0gBSJ9T0w7cu7iJZbH3T31)
### [Build with Langchain - Advanced by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae06tclDATrMYY0idsTdLg9v)
### [LangGraph by LangChain.ai](https://www.youtube.com/playlist?list=PLfaIDFEXuae16n2TWUkKq5PgJ0w6Pkwtg)
### [by Greg Kamradt](https://www.youtube.com/playlist?list=PLqZXAkvF1bPNQER9mLmDbntNfSpzdDIU5)
### [by Sam Witteveen](https://www.youtube.com/playlist?list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ)
### [by James Briggs](https://www.youtube.com/playlist?list=PLIUOU7oqGTLieV9uTIFMm6_4PXg-hlN6F)
@ -16,7 +12,6 @@
### [by Mayo Oshin](https://www.youtube.com/@chatwithdata/search?query=langchain)
### [by 1 little Coder](https://www.youtube.com/playlist?list=PLpdmBGJ6ELUK-v0MK-t4wZmVEbxM5xk6L)
## Courses
### Featured courses on Deeplearning.AI
@ -29,12 +24,14 @@
### Online courses
- [Udemy](https://www.udemy.com/courses/search/?q=langchain)
- [DataCamp](https://www.datacamp.com/courses/developing-llm-applications-with-langchain)
- [Pluralsight](https://www.pluralsight.com/search?q=langchain)
- [Coursera](https://www.coursera.org/search?query=langchain)
- [Maven](https://maven.com/courses?query=langchain)
- [Udacity](https://www.udacity.com/catalog/all/any-price/any-school/any-skill/any-difficulty/any-duration/any-type/relevance/page-1?searchValue=langchain)
- [LinkedIn Learning](https://www.linkedin.com/search/results/learning/?keywords=langchain)
- [edX](https://www.edx.org/search?q=langchain)
- [freeCodeCamp](https://www.youtube.com/@freecodecamp/search?query=langchain)
## Short Tutorials
@ -43,7 +40,11 @@
- [by Rabbitmetrics](https://youtu.be/aywZrzNaKjs)
- [by Ivan Reznikov](https://medium.com/@ivanreznikov/langchain-101-course-updated-668f7b41d6cb)
## [Documentation: Use cases](/docs/use_cases)
## Books and Handbooks
- [Generative AI with LangChain](https://www.amazon.com/Generative-AI-LangChain-language-ChatGPT/dp/1835083463/ref=sr_1_1?crid=1GMOMH0G7GLR&keywords=generative+ai+with+langchain&qid=1703247181&sprefix=%2Caps%2C298&sr=8-1) by [Ben Auffrath](https://www.amazon.com/stores/Ben-Auffarth/author/B08JQKSZ7D?ref=ap_rdr&store_ref=ap_rdr&isDramIntegrated=true&shoppingPortalEnabled=true), ©️ 2023 Packt Publishing
- [LangChain AI Handbook](https://www.pinecone.io/learn/langchain/) By **James Briggs** and **Francisco Ingham**
- [LangChain Cheatsheet](https://pub.towardsai.net/langchain-cheatsheet-all-secrets-on-a-single-page-8be26b721cde) by **Ivan Reznikov**
---------------------

@ -1,36 +0,0 @@
# langchain
## 0.1.0 (Jan 5, 2024)
#### Deleted
No deletions.
#### Deprecated
Deprecated classes and methods will be removed in 0.2.0
| Deprecated | Alternative | Reason |
|---------------------------------|-----------------------------------|------------------------------------------------|
| ChatVectorDBChain | ConversationalRetrievalChain | More general to all retrievers |
| create_ernie_fn_chain | create_ernie_fn_runnable | Use LCEL under the hood |
| created_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
| NatBotChain | | Not used |
| create_openai_fn_chain | create_openai_fn_runnable | Use LCEL under the hood |
| create_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
| load_query_constructor_chain | load_query_constructor_runnable | Use LCEL under the hood |
| VectorDBQA | RetrievalQA | More general to all retrievers |
| Sequential Chain | LCEL | Obviated by LCEL |
| SimpleSequentialChain | LCEL | Obviated by LCEL |
| TransformChain | LCEL/RunnableLambda | Obviated by LCEL |
| create_tagging_chain | create_structured_output_runnable | Use LCEL under the hood |
| ChatAgent | create_react_agent | Use LCEL builder over a class |
| ConversationalAgent | create_react_agent | Use LCEL builder over a class |
| ConversationalChatAgent | create_json_chat_agent | Use LCEL builder over a class |
| initialize_agent | Individual create agent methods | Individual create agent methods are more clear |
| ZeroShotAgent | create_react_agent | Use LCEL builder over a class |
| OpenAIFunctionsAgent | create_openai_functions_agent | Use LCEL builder over a class |
| OpenAIMultiFunctionsAgent | create_openai_tools_agent | Use LCEL builder over a class |
| SelfAskWithSearchAgent | create_self_ask_with_search | Use LCEL builder over a class |
| StructuredChatAgent | create_structured_chat_agent | Use LCEL builder over a class |
| XMLAgent | create_xml_agent | Use LCEL builder over a class |

@ -1,27 +1,10 @@
# langchain-core
## 0.1.7 (Jan 5, 2024)
#### Deleted
No deletions.
## 0.1.x
#### Deprecated
- `BaseChatModel` methods `__call__`, `call_as_llm`, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.invoke` instead.
- `BaseChatModel` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseChatModel.ainvoke` instead.
- `BaseLLM` methods `__call__, `predict`, `predict_messages`. Will be removed in 0.2.0. Use `BaseLLM.invoke` instead.
- `BaseLLM` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseLLM.ainvoke` instead.
#### Fixed
- Restrict recursive URL scraping: [#15559](https://github.com/langchain-ai/langchain/pull/15559)
#### Added
No additions.
#### Beta
- Marked `langchain_core.load.load` and `langchain_core.load.loads` as beta.
- Marked `langchain_core.beta.runnables.context.ContextGet` and `langchain_core.beta.runnables.context.ContextSet` as beta.
- `BaseLLM` methods `apredict`, `apredict_messages`. Will be removed in 0.2.0. Use `BaseLLM.ainvoke` instead.

@ -0,0 +1,93 @@
# langchain
## 0.2.0
### Deleted
As of release 0.2.0, `langchain` is required to be integration-agnostic. This means that code in `langchain` should not by default instantiate any specific chat models, llms, embedding models, vectorstores etc; instead, the user will be required to specify those explicitly.
The following functions and classes require an explicit LLM to be passed as an argument:
- `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit`
- `langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit`
- `langchain.chains.openai_functions.get_openapi_chain`
- `langchain.chains.router.MultiRetrievalQAChain.from_retrievers`
- `langchain.indexes.VectorStoreIndexWrapper.query`
- `langchain.indexes.VectorStoreIndexWrapper.query_with_sources`
- `langchain.indexes.VectorStoreIndexWrapper.aquery_with_sources`
- `langchain.chains.flare.FlareChain`
The following classes now require passing an explicit Embedding model as an argument:
- `langchain.indexes.VectostoreIndexCreator`
The following code has been removed:
- `langchain.natbot.NatBotChain.from_default` removed in favor of the `from_llm` class method.
### Deprecated
We have two main types of deprecations:
1. Code that was moved from `langchain` into another package (e.g, `langchain-community`)
If you try to import it from `langchain`, the import will keep on working, but will raise a deprecation warning. The warning will provide a replacement import statement.
```python
python -c "from langchain.document_loaders.markdown import UnstructuredMarkdownLoader"
```
```python
LangChainDeprecationWarning: Importing UnstructuredMarkdownLoader from langchain.document_loaders is deprecated. Please replace deprecated imports:
>> from langchain.document_loaders import UnstructuredMarkdownLoader
with new imports of:
>> from langchain_community.document_loaders import UnstructuredMarkdownLoader
```
We will continue supporting the imports in `langchain` until release 0.4 as long as the relevant package where the code lives is installed. (e.g., as long as `langchain_community` is installed.)
However, we advise for users to not rely on these imports and instead migrate to the new imports. To help with this process, were releasing a migration script via the LangChain CLI. See further instructions in migration guide.
1. Code that has better alternatives available and will eventually be removed, so theres only a single way to do things. (e.g., `predict_messages` method in ChatModels has been deprecated in favor of `invoke`).
Many of these were marked for removal in 0.2. We have bumped the removal to 0.3.
## 0.1.0 (Jan 5, 2024)
### Deleted
No deletions.
### Deprecated
Deprecated classes and methods will be removed in 0.2.0
| Deprecated | Alternative | Reason |
|---------------------------------|-----------------------------------|------------------------------------------------|
| ChatVectorDBChain | ConversationalRetrievalChain | More general to all retrievers |
| create_ernie_fn_chain | create_ernie_fn_runnable | Use LCEL under the hood |
| created_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
| NatBotChain | | Not used |
| create_openai_fn_chain | create_openai_fn_runnable | Use LCEL under the hood |
| create_structured_output_chain | create_structured_output_runnable | Use LCEL under the hood |
| load_query_constructor_chain | load_query_constructor_runnable | Use LCEL under the hood |
| VectorDBQA | RetrievalQA | More general to all retrievers |
| Sequential Chain | LCEL | Obviated by LCEL |
| SimpleSequentialChain | LCEL | Obviated by LCEL |
| TransformChain | LCEL/RunnableLambda | Obviated by LCEL |
| create_tagging_chain | create_structured_output_runnable | Use LCEL under the hood |
| ChatAgent | create_react_agent | Use LCEL builder over a class |
| ConversationalAgent | create_react_agent | Use LCEL builder over a class |
| ConversationalChatAgent | create_json_chat_agent | Use LCEL builder over a class |
| initialize_agent | Individual create agent methods | Individual create agent methods are more clear |
| ZeroShotAgent | create_react_agent | Use LCEL builder over a class |
| OpenAIFunctionsAgent | create_openai_functions_agent | Use LCEL builder over a class |
| OpenAIMultiFunctionsAgent | create_openai_tools_agent | Use LCEL builder over a class |
| SelfAskWithSearchAgent | create_self_ask_with_search | Use LCEL builder over a class |
| StructuredChatAgent | create_structured_chat_agent | Use LCEL builder over a class |
| XMLAgent | create_xml_agent | Use LCEL builder over a class |

@ -0,0 +1,655 @@
# Conceptual guide
import ThemedImage from '@theme/ThemedImage';
import useBaseUrl from '@docusaurus/useBaseUrl';
This section contains introductions to key parts of LangChain.
## Architecture
LangChain as a framework consists of a number of packages.
### `langchain-core`
This package contains base abstractions of different components and ways to compose them together.
The interfaces for core components like LLMs, vectorstores, retrievers and more are defined here.
No third party integrations are defined here.
The dependencies are kept purposefully very lightweight.
### Partner packages
While the long tail of integrations are in `langchain-community`, we split popular integrations into their own packages (e.g. `langchain-openai`, `langchain-anthropic`, etc).
This was done in order to improve support for these important integrations.
### `langchain`
The main `langchain` package contains chains, agents, and retrieval strategies that make up an application's cognitive architecture.
These are NOT third party integrations.
All chains, agents, and retrieval strategies here are NOT specific to any one integration, but rather generic across all integrations.
### `langchain-community`
This package contains third party integrations that are maintained by the LangChain community.
Key partner packages are separated out (see below).
This contains all integrations for various components (LLMs, vectorstores, retrievers).
All dependencies in this package are optional to keep the package as lightweight as possible.
### [`langgraph`](/docs/langgraph)
`langgraph` is an extension of `langchain` aimed at
building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph.
LangGraph exposes high level interfaces for creating common types of agents, as well as a low-level API for constructing more contr
### [`langserve`](/docs/langserve)
A package to deploy LangChain chains as REST APIs. Makes it easy to get a production ready API up and running.
### [LangSmith](/docs/langsmith)
A developer platform that lets you debug, test, evaluate, and monitor LLM applications.
<ThemedImage
alt="Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers."
sources={{
light: useBaseUrl('/svg/langchain_stack.svg'),
dark: useBaseUrl('/svg/langchain_stack_dark.svg'),
}}
title="LangChain Framework Overview"
/>
## LangChain Expression Language (LCEL)
LangChain Expression Language, or LCEL, is a declarative way to chain LangChain components.
LCEL was designed from day 1 to **support putting prototypes in production, with no code changes**, from the simplest “prompt + LLM” chain to the most complex chains (weve seen folks successfully run LCEL chains with 100s of steps in production). To highlight a few of the reasons you might want to use LCEL:
**First-class streaming support**
When you build your chains with LCEL you get the best possible time-to-first-token (time elapsed until the first chunk of output comes out). For some chains this means eg. we stream tokens straight from an LLM to a streaming output parser, and you get back parsed, incremental chunks of output at the same rate as the LLM provider outputs the raw tokens.
**Async support**
Any chain built with LCEL can be called both with the synchronous API (eg. in your Jupyter notebook while prototyping) as well as with the asynchronous API (eg. in a [LangServe](/docs/langsmith) server). This enables using the same code for prototypes and in production, with great performance, and the ability to handle many concurrent requests in the same server.
**Optimized parallel execution**
Whenever your LCEL chains have steps that can be executed in parallel (eg if you fetch documents from multiple retrievers) we automatically do it, both in the sync and the async interfaces, for the smallest possible latency.
**Retries and fallbacks**
Configure retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. Were currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
**Access intermediate results**
For more complex chains its often very useful to access the results of intermediate steps even before the final output is produced. This can be used to let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and its available on every [LangServe](/docs/langserve) server.
**Input and output schemas**
Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
[**Seamless LangSmith tracing**](/docs/langsmith)
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
With LCEL, **all** steps are automatically logged to [LangSmith](/docs/langsmith/) for maximum observability and debuggability.
[**Seamless LangServe deployment**](/docs/langserve)
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).
### Runnable interface
To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://api.python.langchain.com/en/stable/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below.
This is a standard interface, which makes it easy to define custom chains as well as invoke them in a standard way.
The standard interface includes:
- [`stream`](#stream): stream back chunks of the response
- [`invoke`](#invoke): call the chain on an input
- [`batch`](#batch): call the chain on a list of inputs
These also have corresponding async methods that should be used with [asyncio](https://docs.python.org/3/library/asyncio.html) `await` syntax for concurrency:
- `astream`: stream back chunks of the response async
- `ainvoke`: call the chain on an input async
- `abatch`: call the chain on a list of inputs async
- `astream_log`: stream back intermediate steps as they happen, in addition to the final response
- `astream_events`: **beta** stream events as they happen in the chain (introduced in `langchain-core` 0.1.14)
The **input type** and **output type** varies by component:
| Component | Input Type | Output Type |
| --- | --- | --- |
| Prompt | Dictionary | PromptValue |
| ChatModel | Single string, list of chat messages or a PromptValue | ChatMessage |
| LLM | Single string, list of chat messages or a PromptValue | String |
| OutputParser | The output of an LLM or ChatModel | Depends on the parser |
| Retriever | Single string | List of Documents |
| Tool | Single string or dictionary, depending on the tool | Depends on the tool |
All runnables expose input and output **schemas** to inspect the inputs and outputs:
- `input_schema`: an input Pydantic model auto-generated from the structure of the Runnable
- `output_schema`: an output Pydantic model auto-generated from the structure of the Runnable
## Components
LangChain provides standard, extendable interfaces and external integrations for various components useful for building with LLMs.
Some components LangChain implements, some components we rely on third-party integrations for, and others are a mix.
### Chat models
Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text).
These are traditionally newer models (older models are generally `LLMs`, see above).
Chat models support the assignment of distinct roles to conversation messages, helping to distinguish messages from the AI, users, and instructions such as system messages.
Although the underlying models are messages in, message out, the LangChain wrappers also allow these models to take a string as input. This means you can easily use chat models in place of LLMs.
When a string is passed in as input, it is converted to a HumanMessage and then passed to the underlying model.
LangChain does not provide any ChatModels, rather we rely on third party integrations.
We have some standardized parameters when constructing ChatModels:
- `model`: the name of the model
ChatModels also accept other parameters that are specific to that integration.
:::important
**Tool Calling** Some chat models have been fine-tuned for tool calling and provide a dedicated API for tool calling.
Generally, such models are better at tool calling than non-fine-tuned models, and are recommended for use cases that require tool calling.
Please see the [tool calling section](/docs/concepts/#functiontool-calling) for more information.
:::
### LLMs
Language models that takes a string as input and returns a string.
These are traditionally older models (newer models generally are `ChatModels`, see below).
Although the underlying models are string in, string out, the LangChain wrappers also allow these models to take messages as input.
This makes them interchangeable with ChatModels.
When messages are passed in as input, they will be formatted into a string under the hood before being passed to the underlying model.
LangChain does not provide any LLMs, rather we rely on third party integrations.
### Messages
Some language models take a list of messages as input and return a message.
There are a few different types of messages.
All messages have a `role`, `content`, and `response_metadata` property.
The `role` describes WHO is saying the message.
LangChain has different message classes for different roles.
The `content` property describes the content of the message.
This can be a few different things:
- A string (most models deal this type of content)
- A List of dictionaries (this is used for multi-modal input, where the dictionary contains information about that input type and that input location)
#### HumanMessage
This represents a message from the user.
#### AIMessage
This represents a message from the model. In addition to the `content` property, these messages also have:
**`response_metadata`**
The `response_metadata` property contains additional metadata about the response. The data here is often specific to each model provider.
This is where information like log-probs and token usage may be stored.
**`tool_calls`**
These represent a decision from an language model to call a tool. They are included as part of an `AIMessage` output.
They can be accessed from there with the `.tool_calls` property.
This property returns a list of dictionaries. Each dictionary has the following keys:
- `name`: The name of the tool that should be called.
- `args`: The arguments to that tool.
- `id`: The id of that tool call.
#### SystemMessage
This represents a system message, which tells the model how to behave. Not every model provider supports this.
#### FunctionMessage
This represents the result of a function call. In addition to `role` and `content`, this message has a `name` parameter which conveys the name of the function that was called to produce this result.
#### ToolMessage
This represents the result of a tool call. This is distinct from a FunctionMessage in order to match OpenAI's `function` and `tool` message types. In addition to `role` and `content`, this message has a `tool_call_id` parameter which conveys the id of the call to the tool that was called to produce this result.
### Prompt templates
Prompt templates help to translate user input and parameters into instructions for a language model.
This can be used to guide a model's response, helping it understand the context and generate relevant and coherent language-based output.
Prompt Templates take as input a dictionary, where each key represents a variable in the prompt template to fill in.
Prompt Templates output a PromptValue. This PromptValue can be passed to an LLM or a ChatModel, and can also be cast to a string or a list of messages.
The reason this PromptValue exists is to make it easy to switch between strings and messages.
There are a few different types of prompt templates
#### String PromptTemplates
These prompt templates are used to format a single string, and generally are used for simpler inputs.
For example, a common way to construct and use a PromptTemplate is as follows:
```python
from langchain_core.prompts import PromptTemplate
prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")
prompt_template.invoke({"topic": "cats"})
```
#### ChatPromptTemplates
These prompt templates are used to format a list of messages. These "templates" consist of a list of templates themselves.
For example, a common way to construct and use a ChatPromptTemplate is as follows:
```python
from langchain_core.prompts import ChatPromptTemplate
prompt_template = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant"),
("user", "Tell me a joke about {topic}")
])
prompt_template.invoke({"topic": "cats"})
```
In the above example, this ChatPromptTemplate will construct two messages when called.
The first is a system message, that has no variables to format.
The second is a HumanMessage, and will be formatted by the `topic` variable the user passes in.
#### MessagesPlaceholder
This prompt template is responsible for adding a list of messages in a particular place.
In the above ChatPromptTemplate, we saw how we could format two messages, each one a string.
But what if we wanted the user to pass in a list of messages that we would slot into a particular spot?
This is how you use MessagesPlaceholder.
```python
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage
prompt_template = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant"),
MessagesPlaceholder("msgs")
])
prompt_template.invoke({"msgs": [HumanMessage(content="hi!")]})
```
This will produce a list of two messages, the first one being a system message, and the second one being the HumanMessage we passed in.
If we had passed in 5 messages, then it would have produced 6 messages in total (the system message plus the 5 passed in).
This is useful for letting a list of messages be slotted into a particular spot.
An alternative way to accomplish the same thing without using the `MessagesPlaceholder` class explicitly is:
```python
prompt_template = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant"),
("placeholder", "{msgs}") # <-- This is the changed part
])
```
### Example selectors
One common prompting technique for achieving better performance is to include examples as part of the prompt.
This gives the language model concrete examples of how it should behave.
Sometimes these examples are hardcoded into the prompt, but for more advanced situations it may be nice to dynamically select them.
Example Selectors are classes responsible for selecting and then formatting examples into prompts.
### Output parsers
:::note
The information here refers to parsers that take a text output from a model try to parse it into a more structured representation.
More and more models are supporting function (or tool) calling, which handles this automatically.
It is recommended to use function/tool calling rather than output parsing.
See documentation for that [here](/docs/concepts/#function-tool-calling).
:::
Responsible for taking the output of a model and transforming it to a more suitable format for downstream tasks.
Useful when you are using LLMs to generate structured data, or to normalize output from chat models and LLMs.
LangChain has lots of different types of output parsers. This is a list of output parsers LangChain supports. The table below has various pieces of information:
**Name**: The name of the output parser
**Supports Streaming**: Whether the output parser supports streaming.
**Has Format Instructions**: Whether the output parser has format instructions. This is generally available except when (a) the desired schema is not specified in the prompt but rather in other parameters (like OpenAI function calling), or (b) when the OutputParser wraps another OutputParser.
**Calls LLM**: Whether this output parser itself calls an LLM. This is usually only done by output parsers that attempt to correct misformatted output.
**Input Type**: Expected input type. Most output parsers work on both strings and messages, but some (like OpenAI Functions) need a message with specific kwargs.
**Output Type**: The output type of the object returned by the parser.
**Description**: Our commentary on this output parser and when to use it.
| Name | Supports Streaming | Has Format Instructions | Calls LLM | Input Type | Output Type | Description |
|-----------------|--------------------|-------------------------------|-----------|----------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [JSON](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html#langchain_core.output_parsers.json.JsonOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. |
| [XML](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). |
| [CSV](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. |
| [OutputFixing](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. |
| [RetryWithError](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html#langchain.output_parsers.retry.RetryWithErrorOutputParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the original inputs, the bad output, and the error message to an LLM and ask it to fix it. Compared to OutputFixingParser, this one also sends the original instructions. |
| [Pydantic](https://api.python.langchain.com/en/latest/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html#langchain_core.output_parsers.pydantic.PydanticOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. |
| [YAML](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. Uses YAML to encode it. |
| [PandasDataFrame](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser.html#langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser) | | ✅ | | `str` \| `Message` | `dict` | Useful for doing operations with pandas DataFrames. |
| [Enum](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.enum.EnumOutputParser.html#langchain.output_parsers.enum.EnumOutputParser) | | ✅ | | `str` \| `Message` | `Enum` | Parses response into one of the provided enum values. |
| [Datetime](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.datetime.DatetimeOutputParser.html#langchain.output_parsers.datetime.DatetimeOutputParser) | | ✅ | | `str` \| `Message` | `datetime.datetime` | Parses response into a datetime string. |
| [Structured](https://api.python.langchain.com/en/latest/output_parsers/langchain.output_parsers.structured.StructuredOutputParser.html#langchain.output_parsers.structured.StructuredOutputParser) | | ✅ | | `str` \| `Message` | `Dict[str, str]` | An output parser that returns structured information. It is less powerful than other output parsers since it only allows for fields to be strings. This can be useful when you are working with smaller LLMs. |
### Chat history
Most LLM applications have a conversational interface.
An essential component of a conversation is being able to refer to information introduced earlier in the conversation.
At bare minimum, a conversational system should be able to access some window of past messages directly.
The concept of `ChatHistory` refers to a class in LangChain which can be used to wrap an arbitrary chain.
This `ChatHistory` will keep track of inputs and outputs of the underlying chain, and append them as messages to a message database
Future interactions will then load those messages and pass them into the chain as part of the input.
### Documents
A Document object in LangChain contains information about some data. It has two attributes:
- `page_content: str`: The content of this document. Currently is only a string.
- `metadata: dict`: Arbitrary metadata associated with this document. Can track the document id, file name, etc.
### Document loaders
These classes load Document objects. LangChain has hundreds of integrations with various data sources to load data from: Slack, Notion, Google Drive, etc.
Each DocumentLoader has its own specific parameters, but they can all be invoked in the same way with the `.load` method.
An example use case is as follows:
```python
from langchain_community.document_loaders.csv_loader import CSVLoader
loader = CSVLoader(
... # <-- Integration specific parameters here
)
data = loader.load()
```
### Text splitters
Once you've loaded documents, you'll often want to transform them to better suit your application. The simplest example is you may want to split a long document into smaller chunks that can fit into your model's context window. LangChain has a number of built-in document transformers that make it easy to split, combine, filter, and otherwise manipulate documents.
When you want to deal with long pieces of text, it is necessary to split up that text into chunks. As simple as this sounds, there is a lot of potential complexity here. Ideally, you want to keep the semantically related pieces of text together. What "semantically related" means could depend on the type of text. This notebook showcases several ways to do that.
At a high level, text splitters work as following:
1. Split the text up into small, semantically meaningful chunks (often sentences).
2. Start combining these small chunks into a larger chunk until you reach a certain size (as measured by some function).
3. Once you reach that size, make that chunk its own piece of text and then start creating a new chunk of text with some overlap (to keep context between chunks).
That means there are two different axes along which you can customize your text splitter:
1. How the text is split
2. How the chunk size is measured
### Embedding models
The Embeddings class is a class designed for interfacing with text embedding models. There are lots of embedding model providers (OpenAI, Cohere, Hugging Face, etc) - this class is designed to provide a standard interface for all of them.
Embeddings create a vector representation of a piece of text. This is useful because it means we can think about text in the vector space, and do things like semantic search where we look for pieces of text that are most similar in the vector space.
The base Embeddings class in LangChain provides two methods: one for embedding documents and one for embedding a query. The former takes as input multiple texts, while the latter takes a single text. The reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself).
### Vector stores
One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding vectors,
and then at query time to embed the unstructured query and retrieve the embedding vectors that are 'most similar' to the embedded query.
A vector store takes care of storing embedded data and performing vector search for you.
Vector stores can be converted to the retriever interface by doing:
```python
vectorstore = MyVectorStore()
retriever = vectorstore.as_retriever()
```
### Retrievers
A retriever is an interface that returns documents given an unstructured query.
It is more general than a vector store.
A retriever does not need to be able to store documents, only to return (or retrieve) them.
Retrievers can be created from vectorstores, but are also broad enough to include [Wikipedia search](/docs/integrations/retrievers/wikipedia/) and [Amazon Kendra](/docs/integrations/retrievers/amazon_kendra_retriever/).
Retrievers accept a string query as input and return a list of Document's as output.
### Tools
Tools are interfaces that an agent, a chain, or a chat model / LLM can use to interact with the world.
A tool consists of the following components:
1. The name of the tool
2. A description of what the tool does
3. JSON schema of what the inputs to the tool are
4. The function to call
5. Whether the result of a tool should be returned directly to the user (only relevant for agents)
The name, description and JSON schema are provided as context
to the LLM, allowing the LLM to determine how to use the tool
appropriately.
Given a list of available tools and a prompt, an LLM can request
that one or more tools be invoked with appropriate arguments.
Generally, when designing tools to be used by a chat model or LLM, it is important to keep in mind the following:
- Chat models that have been fine-tuned for tool calling will be better at tool calling than non-fine-tuned models.
- Non fine-tuned models may not be able to use tools at all, especially if the tools are complex or require multiple tool calls.
- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas.
- Simpler tools are generally easier for models to use than more complex tools.
### Toolkits
Toolkits are collections of tools that are designed to be used together for specific tasks. They have convenient loading methods.
All Toolkits expose a `get_tools` method which returns a list of tools.
You can therefore do:
```python
# Initialize a toolkit
toolkit = ExampleTookit(...)
# Get list of tools
tools = toolkit.get_tools()
```
### Agents
By themselves, language models can't take actions - they just output text.
A big use case for LangChain is creating **agents**.
Agents are systems that use an LLM as a reasoning enginer to determine which actions to take and what the inputs to those actions should be.
The results of those actions can then be fed back into the agent and it determine whether more actions are needed, or whether it is okay to finish.
[LangGraph](https://github.com/langchain-ai/langgraph) is an extension of LangChain specifically aimed at creating highly controllable and customizable agents.
Please check out that documentation for a more in depth overview of agent concepts.
There is a legacy agent concept in LangChain that we are moving towards deprecating: `AgentExecutor`.
AgentExecutor was essentially a runtime for agents.
It was a great place to get started, however, it was not flexible enough as you started to have more customized agents.
In order to solve that we built LangGraph to be this flexible, highly-controllable runtime.
If you are still using AgentExecutor, do not fear: we still have a guide on [how to use AgentExecutor](/docs/how_to/agent_executor).
It is recommended, however, that you start to transition to LangGraph.
In order to assist in this we have put together a [transition guide on how to do so](/docs/how_to/migrate_agent)
### Callbacks
LangChain provides a callbacks system that allows you to hook into the various stages of your LLM application. This is useful for logging, monitoring, streaming, and other tasks.
You can subscribe to these events by using the `callbacks` argument available throughout the API. This argument is list of handler objects, which are expected to implement one or more of the methods described below in more detail.
#### Callback handlers
`CallbackHandlers` are objects that implement the [`CallbackHandler`](https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) interface, which has a method for each event that can be subscribed to.
The `CallbackManager` will call the appropriate method on each handler when the event is triggered.
```python
class BaseCallbackHandler:
"""Base callback handler that can be used to handle callbacks from langchain."""
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> Any:
"""Run when LLM starts running."""
def on_chat_model_start(
self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any
) -> Any:
"""Run when Chat Model starts running."""
def on_llm_new_token(self, token: str, **kwargs: Any) -> Any:
"""Run on new LLM token. Only available when streaming is enabled."""
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any:
"""Run when LLM ends running."""
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> Any:
"""Run when LLM errors."""
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> Any:
"""Run when chain starts running."""
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> Any:
"""Run when chain ends running."""
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> Any:
"""Run when chain errors."""
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> Any:
"""Run when tool starts running."""
def on_tool_end(self, output: Any, **kwargs: Any) -> Any:
"""Run when tool ends running."""
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> Any:
"""Run when tool errors."""
def on_text(self, text: str, **kwargs: Any) -> Any:
"""Run on arbitrary text."""
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action."""
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:
"""Run on agent end."""
```
#### Passing callbacks
The `callbacks` property is available on most objects throughout the API (Models, Tools, Agents, etc.) in two different places:
- **Constructor callbacks**: defined in the constructor, e.g. `ChatAnthropic(callbacks=[handler], tags=['a-tag'])`. In this case, the callbacks will be used for all calls made on that object, and will be scoped to that object only.
For example, if you initialize a chat model with constructor callbacks, then use it within a chain, the callbacks will only be invoked for calls to that model.
- **Request callbacks**: passed into the `invoke` method used for issuing a request. In this case, the callbacks will be used for that specific request only, and all sub-requests that it contains (e.g. a call to a sequence that triggers a call to a model, which uses the same handler passed in the `invoke()` method).
In the `invoke()` method, callbacks are passed through the `config` parameter.
## Techniques
### Function/tool calling
:::info
We use the term tool calling interchangeably with function calling. Although
function calling is sometimes meant to refer to invocations of a single function,
we treat all models as though they can return multiple tool or function calls in
each message.
:::
Tool calling allows a model to respond to a given prompt by generating output that
matches a user-defined schema. While the name implies that the model is performing
some action, this is actually not the case! The model is coming up with the
arguments to a tool, and actually running the tool (or not) is up to the user -
for example, if you want to [extract output matching some schema](/docs/tutorials/extraction)
from unstructured text, you could give the model an "extraction" tool that takes
parameters matching the desired schema, then treat the generated output as your final
result.
A tool call includes a name, arguments dict, and an optional identifier. The
arguments dict is structured `{argument_name: argument_value}`.
Many LLM providers, including [Anthropic](https://www.anthropic.com/),
[Cohere](https://cohere.com/), [Google](https://cloud.google.com/vertex-ai),
[Mistral](https://mistral.ai/), [OpenAI](https://openai.com/), and others,
support variants of a tool calling feature. These features typically allow requests
to the LLM to include available tools and their schemas, and for responses to include
calls to these tools. For instance, given a search engine tool, an LLM might handle a
query by first issuing a call to the search engine. The system calling the LLM can
receive the tool call, execute it, and return the output to the LLM to inform its
response. LangChain includes a suite of [built-in tools](/docs/integrations/tools/)
and supports several methods for defining your own [custom tools](/docs/how_to/custom_tools).
LangChain provides a standardized interface for tool calling that is consistent across different models.
The standard interface consists of:
* `ChatModel.bind_tools()`: a method for specifying which tools are available for a model to call.
* `AIMessage.tool_calls`: an attribute on the `AIMessage` returned from the model for accessing the tool calls requested by the model.
There are two main use cases for function/tool calling:
- [How to return structured data from an LLM](/docs/how_to/structured_output/)
- [How to use a model to call tools](/docs/how_to/tool_calling/)
### Retrieval
LangChain provides several advanced retrieval types. A full list is below, along with the following information:
**Name**: Name of the retrieval algorithm.
**Index Type**: Which index type (if any) this relies on.
**Uses an LLM**: Whether this retrieval method uses an LLM.
**When to Use**: Our commentary on when you should considering using this retrieval method.
**Description**: Description of what this retrieval algorithm is doing.
| Name | Index Type | Uses an LLM | When to Use | Description |
|---------------------------|------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Vectorstore](/docs/how_to/vectorstore_retriever/) | Vectorstore | No | If you are just getting started and looking for something quick and easy. | This is the simplest method and the one that is easiest to get started with. It involves creating embeddings for each piece of text. |
| [ParentDocument](/docs/how_to/parent_document_retriever/) | Vectorstore + Document Store | No | If your pages have lots of smaller pieces of distinct information that are best indexed by themselves, but best retrieved all together. | This involves indexing multiple chunks for each document. Then you find the chunks that are most similar in embedding space, but you retrieve the whole parent document and return that (rather than individual chunks). |
| [Multi Vector](/docs/how_to/multi_vector/) | Vectorstore + Document Store | Sometimes during indexing | If you are able to extract information from documents that you think is more relevant to index than the text itself. | This involves creating multiple vectors for each document. Each vector could be created in a myriad of ways - examples include summaries of the text and hypothetical questions. |
| [Self Query](/docs/how_to/self_query/) | Vectorstore | Yes | If users are asking questions that are better answered by fetching documents based on metadata rather than similarity with the text. | This uses an LLM to transform user input into two things: (1) a string to look up semantically, (2) a metadata filer to go along with it. This is useful because oftentimes questions are about the METADATA of documents (not the content itself). |
| [Contextual Compression](/docs/how_to/contextual_compression/) | Any | Sometimes | If you are finding that your retrieved documents contain too much irrelevant information and are distracting the LLM. | This puts a post-processing step on top of another retriever and extracts only the most relevant information from retrieved documents. This can be done with embeddings or an LLM. |
| [Time-Weighted Vectorstore](/docs/how_to/time_weighted_vectorstore/) | Vectorstore | No | If you have timestamps associated with your documents, and you want to retrieve the most recent ones | This fetches documents based on a combination of semantic similarity (as in normal vector retrieval) and recency (looking at timestamps of indexed documents) |
| [Multi-Query Retriever](/docs/how_to/MultiQueryRetriever/) | Any | Yes | If users are asking questions that are complex and require multiple pieces of distinct information to respond | This uses an LLM to generate multiple queries from the original one. This is useful when the original query needs pieces of information about multiple topics to be properly answered. By generating multiple queries, we can then fetch documents for each of them. |
| [Ensemble](/docs/how_to/ensemble_retriever/) | Any | No | If you have multiple retrieval methods and want to try combining them. | This fetches documents from multiple retrievers and then combines them. |
### Text splitting
LangChain offers many different types of `text splitters`.
These all live in the `langchain-text-splitters` package.
Table columns:
- **Name**: Name of the text splitter
- **Classes**: Classes that implement this text splitter
- **Splits On**: How this text splitter splits text
- **Adds Metadata**: Whether or not this text splitter adds metadata about where each chunk came from.
- **Description**: Description of the splitter, including recommendation on when to use it.
| Name | Classes | Splits On | Adds Metadata | Description |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recursive | [RecursiveCharacterTextSplitter](/docs/how_to/recursive_text_splitter/), [RecursiveJsonSplitter](/docs/how_to/recursive_json_splitter/) | A list of user defined characters | | Recursively splits text. This splitting is trying to keep related pieces of text next to each other. This is the `recommended way` to start splitting text. |
| HTML | [HTMLHeaderTextSplitter](/docs/how_to/HTML_header_metadata_splitter/), [HTMLSectionSplitter](/docs/how_to/HTML_section_aware_splitter/) | HTML specific characters | ✅ | Splits text based on HTML-specific characters. Notably, this adds in relevant information about where that chunk came from (based on the HTML) |
| Markdown | [MarkdownHeaderTextSplitter](/docs/how_to/markdown_header_metadata_splitter/), | Markdown specific characters | ✅ | Splits text based on Markdown-specific characters. Notably, this adds in relevant information about where that chunk came from (based on the Markdown) |
| Code | [many languages](/docs/how_to/code_splitter/) | Code (Python, JS) specific characters | | Splits text based on characters specific to coding languages. 15 different languages are available to choose from. |
| Token | [many classes](/docs/how_to/split_by_token/) | Tokens | | Splits text on tokens. There exist a few different ways to measure tokens. |
| Character | [CharacterTextSplitter](/docs/how_to/character_text_splitter/) | A user defined character | | Splits text based on a user defined character. One of the simpler methods. |
| Semantic Chunker (Experimental) | [SemanticChunker](/docs/how_to/semantic-chunker/) | Sentences | | First splits on sentences. Then combines ones next to each other if they are semantically similar enough. Taken from [Greg Kamradt](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb) |
| Integration: AI21 Semantic | [AI21SemanticTextSplitter](/docs/integrations/document_transformers/ai21_semantic_text_splitter/) | ✅ | Identifies distinct topics that form coherent pieces of text and splits along those. |

@ -98,7 +98,7 @@ To run unit tests in Docker:
make docker_tests
```
There are also [integration tests and code-coverage](./testing) available.
There are also [integration tests and code-coverage](/docs/contributing/testing/) available.
### Only develop langchain_core or langchain_experimental

@ -16,15 +16,15 @@ LangChain's documentation aspires to follow the [Diataxis framework](https://dia
Under this framework, all documentation falls under one of four categories:
- **Tutorials**: Lessons that take the reader by the hand through a series of conceptual steps to complete a project.
- An example of this is our [LCEL streaming guide](/docs/expression_language/streaming).
- Our guides on [custom components](/docs/modules/model_io/chat/custom_chat_model) is another one.
- An example of this is our [LCEL streaming guide](/docs/how_to/streaming).
- Our guides on [custom components](/docs/how_to/custom_chat_model) is another one.
- **How-to guides**: Guides that take the reader through the steps required to solve a real-world problem.
- The clearest examples of this are our [Use case](/docs/use_cases/) quickstart pages.
- The clearest examples of this are our [Use case](/docs/how_to#use-cases) quickstart pages.
- **Reference**: Technical descriptions of the machinery and how to operate it.
- Our [Runnable interface](/docs/expression_language/interface) page is an example of this.
- Our [Runnable interface](/docs/concepts#interface) page is an example of this.
- The [API reference pages](https://api.python.langchain.com/) are another.
- **Explanation**: Explanations that clarify and illuminate a particular topic.
- The [LCEL primitives pages](/docs/expression_language/primitives/sequence) are an example of this.
- The [LCEL primitives pages](/docs/how_to/sequence) are an example of this.
Each category serves a distinct purpose and requires a specific approach to writing and structuring the content.
@ -35,14 +35,14 @@ when contributing new documentation:
### Getting started
The [getting started section](/docs/get_started/introduction) includes a high-level introduction to LangChain, a quickstart that
The [getting started section](/docs/introduction) includes a high-level introduction to LangChain, a quickstart that
tours LangChain's various features, and logistical instructions around installation and project setup.
It contains elements of **How-to guides** and **Explanations**.
### Use cases
[Use cases](/docs/use_cases/) are guides that are meant to show how to use LangChain to accomplish a specific task (RAG, information extraction, etc.).
[Use cases](/docs/how_to#use-cases) are guides that are meant to show how to use LangChain to accomplish a specific task (RAG, information extraction, etc.).
The quickstarts should be good entrypoints for first-time LangChain developers who prefer to learn by getting something practical prototyped,
then taking the pieces apart retrospectively. These should mirror what LangChain is good at.
@ -55,7 +55,7 @@ The below sections are listed roughly in order of increasing level of abstractio
### Expression Language
[LangChain Expression Language (LCEL)](/docs/expression_language/) is the fundamental way that most LangChain components fit together, and this section is designed to teach
[LangChain Expression Language (LCEL)](/docs/concepts#langchain-expression-language) is the fundamental way that most LangChain components fit together, and this section is designed to teach
developers how to use it to build with LangChain's primitives effectively.
This section should contains **Tutorials** that teach how to stream and use LCEL primitives for more abstract tasks, **Explanations** of specific behaviors,
@ -63,7 +63,7 @@ and some **References** for how to use different methods in the Runnable interfa
### Components
The [components section](/docs/modules) covers concepts one level of abstraction higher than LCEL.
The [components section](/docs/concepts) covers concepts one level of abstraction higher than LCEL.
Abstract base classes like `BaseChatModel` and `BaseRetriever` should be covered here, as well as core implementations of these base classes,
such as `ChatPromptTemplate` and `RecursiveCharacterTextSplitter`. Customization guides belong here too.
@ -88,7 +88,7 @@ Concepts covered in `Integrations` should generally exist in `langchain_communit
### Guides and Ecosystem
The [Guides](/docs/guides) and [Ecosystem](/docs/langsmith/) sections should contain guides that address higher-level problems than the sections above.
The [Guides](/docs/tutorials) and [Ecosystem](/docs/langsmith/) sections should contain guides that address higher-level problems than the sections above.
This includes, but is not limited to, considerations around productionization and development workflows.
These should contain mostly **How-to guides**, **Explanations**, and **Tutorials**.
@ -102,7 +102,7 @@ LangChain's API references. Should act as **References** (as the name implies) w
We have set up our docs to assist a new developer to LangChain. Let's walk through the intended path:
- The developer lands on https://python.langchain.com, and reads through the introduction and the diagram.
- If they are just curious, they may be drawn to the [Quickstart](/docs/get_started/quickstart) to get a high-level tour of what LangChain contains.
- If they are just curious, they may be drawn to the [Quickstart](/docs/tutorials/llm_chain) to get a high-level tour of what LangChain contains.
- If they have a specific task in mind that they want to accomplish, they will be drawn to the Use-Case section. The use-case should provide a good, concrete hook that shows the value LangChain can provide them and be a good entrypoint to the framework.
- They can then move to learn more about the fundamentals of LangChain through the Expression Language sections.
- Next, they can learn about LangChain's various components and integrations.

@ -3,7 +3,7 @@ sidebar_position: 5
---
# Contribute Integrations
To begin, make sure you have all the dependencies outlined in guide on [Contributing Code](./code).
To begin, make sure you have all the dependencies outlined in guide on [Contributing Code](/docs/contributing/code/).
There are a few different places you can contribute integrations for LangChain:
@ -133,7 +133,7 @@ By default, this will include stubs for a Chat Model, an LLM, and/or a Vector St
Some basic tests are presented in the `tests/` directory. You should add more tests to cover your package's functionality.
For information on running and implementing tests, see the [Testing guide](./testing).
For information on running and implementing tests, see the [Testing guide](/docs/contributing/testing/).
### Write documentation
@ -190,12 +190,9 @@ Maintainer steps (Contributors should **not** do these):
## Partner package in external repo
If you are creating a partner package in an external repo, you should follow the same steps as above,
but you will need to set up your own CI/CD and package management.
Partner packages in external repos must be coordinated between the LangChain team and
the partner organization to ensure that they are maintained and updated.
Name your package as `langchain-{partner}-{integration}`.
Still, you have to create the `libs/partners/{partner}-{integration}` folder in the `LangChain` monorepo
and add a `README.md` file with a link to the external repo.
See this [example](https://github.com/langchain-ai/langchain/tree/master/libs/partners/google-genai).
This allows keeping track of all the partner packages in the `LangChain` documentation.
If you're interested in creating a partner package in an external repo, please start
with one in the LangChain repo, and then reach out to the LangChain team to discuss
how to move it to an external repo.

@ -6,7 +6,7 @@ sidebar_position: 0.5
If you plan on contributing to LangChain code or documentation, it can be useful
to understand the high level structure of the repository.
LangChain is organized as a [monorep](https://en.wikipedia.org/wiki/Monorepo) that contains multiple packages.
LangChain is organized as a [monorepo](https://en.wikipedia.org/wiki/Monorepo) that contains multiple packages.
Here's the structure visualized as a tree:

@ -1,139 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "1e997ab7",
"metadata": {},
"source": [
"---\n",
"sidebar_class_name: hidden\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "f09fd305",
"metadata": {},
"source": [
"# Code writing\n",
"\n",
"Example of how to use LCEL to write Python code."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0653c7c7",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-core langchain-experimental langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "bd7c259a",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import (\n",
" ChatPromptTemplate,\n",
")\n",
"from langchain_experimental.utilities import PythonREPL\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "73795d2d",
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Write some python code to solve the user's problem. \n",
"\n",
"Return only python code in Markdown format, e.g.:\n",
"\n",
"```python\n",
"....\n",
"```\"\"\"\n",
"prompt = ChatPromptTemplate.from_messages([(\"system\", template), (\"human\", \"{input}\")])\n",
"\n",
"model = ChatOpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "42859e8a",
"metadata": {},
"outputs": [],
"source": [
"def _sanitize_output(text: str):\n",
" _, after = text.split(\"```python\")\n",
" return after.split(\"```\")[0]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "5ded1a86",
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | model | StrOutputParser() | _sanitize_output | PythonREPL().run"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "208c2b75",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Python REPL can execute arbitrary code. Use with caution.\n"
]
},
{
"data": {
"text/plain": [
"'4\\n'"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"whats 2 plus 2\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -1,267 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "877102d1-02ea-4fa3-8ec7-a08e242b95b3",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 2\n",
"title: Multiple chains\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "0f2bf8d3",
"metadata": {},
"source": [
"Runnables can easily be used to string together multiple Chains"
]
},
{
"cell_type": "code",
"id": "0f316b5c",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d65d4e9e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'El país donde se encuentra la ciudad de Honolulu, donde nació Barack Obama, el 44º Presidente de los Estados Unidos, es Estados Unidos. Honolulu se encuentra en la isla de Oahu, en el estado de Hawái.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from operator import itemgetter\n",
"\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt1 = ChatPromptTemplate.from_template(\"what is the city {person} is from?\")\n",
"prompt2 = ChatPromptTemplate.from_template(\n",
" \"what country is the city {city} in? respond in {language}\"\n",
")\n",
"\n",
"model = ChatOpenAI()\n",
"\n",
"chain1 = prompt1 | model | StrOutputParser()\n",
"\n",
"chain2 = (\n",
" {\"city\": chain1, \"language\": itemgetter(\"language\")}\n",
" | prompt2\n",
" | model\n",
" | StrOutputParser()\n",
")\n",
"\n",
"chain2.invoke({\"person\": \"obama\", \"language\": \"spanish\"})"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "878f8176",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"prompt1 = ChatPromptTemplate.from_template(\n",
" \"generate a {attribute} color. Return the name of the color and nothing else:\"\n",
")\n",
"prompt2 = ChatPromptTemplate.from_template(\n",
" \"what is a fruit of color: {color}. Return the name of the fruit and nothing else:\"\n",
")\n",
"prompt3 = ChatPromptTemplate.from_template(\n",
" \"what is a country with a flag that has the color: {color}. Return the name of the country and nothing else:\"\n",
")\n",
"prompt4 = ChatPromptTemplate.from_template(\n",
" \"What is the color of {fruit} and the flag of {country}?\"\n",
")\n",
"\n",
"model_parser = model | StrOutputParser()\n",
"\n",
"color_generator = (\n",
" {\"attribute\": RunnablePassthrough()} | prompt1 | {\"color\": model_parser}\n",
")\n",
"color_to_fruit = prompt2 | model_parser\n",
"color_to_country = prompt3 | model_parser\n",
"question_generator = (\n",
" color_generator | {\"fruit\": color_to_fruit, \"country\": color_to_country} | prompt4\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d621a870",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatPromptValue(messages=[HumanMessage(content='What is the color of strawberry and the flag of China?', additional_kwargs={}, example=False)])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"question_generator.invoke(\"warm\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b4a9812b-bead-4fd9-ae27-0b8be57e5dc1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='The color of an apple is typically red or green. The flag of China is predominantly red with a large yellow star in the upper left corner and four smaller yellow stars surrounding it.', additional_kwargs={}, example=False)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt = question_generator.invoke(\"warm\")\n",
"model.invoke(prompt)"
]
},
{
"cell_type": "markdown",
"id": "6d75a313-f1c8-4e94-9a17-24e0bf4a2bdc",
"metadata": {},
"source": [
"### Branching and Merging\n",
"\n",
"You may want the output of one component to be processed by 2 or more other components. [RunnableParallels](https://api.python.langchain.com/en/latest/runnables/langchain_core.runnables.base.RunnableParallel.html#langchain_core.runnables.base.RunnableParallel) let you split or fork the chain so multiple components can process the input in parallel. Later, other components can join or merge the results to synthesize a final response. This type of chain creates a computation graph that looks like the following:\n",
"\n",
"```text\n",
" Input\n",
" / \\\n",
" / \\\n",
" Branch1 Branch2\n",
" \\ /\n",
" \\ /\n",
" Combine\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "247fa0bd-4596-4063-8cb3-1d7fc119d982",
"metadata": {},
"outputs": [],
"source": [
"planner = (\n",
" ChatPromptTemplate.from_template(\"Generate an argument about: {input}\")\n",
" | ChatOpenAI()\n",
" | StrOutputParser()\n",
" | {\"base_response\": RunnablePassthrough()}\n",
")\n",
"\n",
"arguments_for = (\n",
" ChatPromptTemplate.from_template(\n",
" \"List the pros or positive aspects of {base_response}\"\n",
" )\n",
" | ChatOpenAI()\n",
" | StrOutputParser()\n",
")\n",
"arguments_against = (\n",
" ChatPromptTemplate.from_template(\n",
" \"List the cons or negative aspects of {base_response}\"\n",
" )\n",
" | ChatOpenAI()\n",
" | StrOutputParser()\n",
")\n",
"\n",
"final_responder = (\n",
" ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"ai\", \"{original_response}\"),\n",
" (\"human\", \"Pros:\\n{results_1}\\n\\nCons:\\n{results_2}\"),\n",
" (\"system\", \"Generate a final response given the critique\"),\n",
" ]\n",
" )\n",
" | ChatOpenAI()\n",
" | StrOutputParser()\n",
")\n",
"\n",
"chain = (\n",
" planner\n",
" | {\n",
" \"results_1\": arguments_for,\n",
" \"results_2\": arguments_against,\n",
" \"original_response\": itemgetter(\"base_response\"),\n",
" }\n",
" | final_responder\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "2564f310-0674-4bb1-9c4e-d7848ca73511",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'While Scrum has its potential cons and challenges, many organizations have successfully embraced and implemented this project management framework to great effect. The cons mentioned above can be mitigated or overcome with proper training, support, and a commitment to continuous improvement. It is also important to note that not all cons may be applicable to every organization or project.\\n\\nFor example, while Scrum may be complex initially, with proper training and guidance, teams can quickly grasp the concepts and practices. The lack of predictability can be mitigated by implementing techniques such as velocity tracking and release planning. The limited documentation can be addressed by maintaining a balance between lightweight documentation and clear communication among team members. The dependency on team collaboration can be improved through effective communication channels and regular team-building activities.\\n\\nScrum can be scaled and adapted to larger projects by using frameworks like Scrum of Scrums or LeSS (Large Scale Scrum). Concerns about speed versus quality can be addressed by incorporating quality assurance practices, such as continuous integration and automated testing, into the Scrum process. Scope creep can be managed by having a well-defined and prioritized product backlog, and a strong product owner can be developed through training and mentorship.\\n\\nResistance to change can be overcome by providing proper education and communication to stakeholders and involving them in the decision-making process. Ultimately, the cons of Scrum can be seen as opportunities for growth and improvement, and with the right mindset and support, they can be effectively managed.\\n\\nIn conclusion, while Scrum may have its challenges and potential cons, the benefits and advantages it offers in terms of collaboration, flexibility, adaptability, transparency, and customer satisfaction make it a widely adopted and successful project management framework. With proper implementation and continuous improvement, organizations can leverage Scrum to drive innovation, efficiency, and project success.'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"input\": \"scrum\"})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv",
"language": "python",
"name": "poetry-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -1,436 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "abf7263d-3a62-4016-b5d5-b157f92f2070",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 0\n",
"title: Prompt + LLM\n",
"---\n"
]
},
{
"cell_type": "markdown",
"id": "9a434f2b-9405-468c-9dfd-254d456b57a6",
"metadata": {},
"source": [
"The most common and valuable composition is taking:\n",
"\n",
"``PromptTemplate`` / ``ChatPromptTemplate`` -> ``LLM`` / ``ChatModel`` -> ``OutputParser``\n",
"\n",
"Almost any other chains you build will use this building block."
]
},
{
"cell_type": "markdown",
"id": "93aa2c87",
"metadata": {},
"source": [
"## PromptTemplate + LLM\n",
"\n",
"The simplest composition is just combining a prompt and model to create a chain that takes user input, adds it to a prompt, passes it to a model, and returns the raw model output.\n",
"\n",
"Note, you can mix and match PromptTemplate/ChatPromptTemplates and LLMs/ChatModels as you like here."
]
},
{
"cell_type": "raw",
"id": "ef79a54b",
"metadata": {},
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "466b65b3",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a joke about {foo}\")\n",
"model = ChatOpenAI()\n",
"chain = prompt | model"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e3d0a6cd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Why don't bears wear shoes?\\n\\nBecause they have bear feet!\", additional_kwargs={}, example=False)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"id": "7eb9ef50",
"metadata": {},
"source": [
"Often times we want to attach kwargs that'll be passed to each model call. Here are a few examples of that:"
]
},
{
"cell_type": "markdown",
"id": "0b1d8f88",
"metadata": {},
"source": [
"### Attaching Stop Sequences"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "562a06bf",
"metadata": {},
"outputs": [],
"source": [
"chain = prompt | model.bind(stop=[\"\\n\"])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "43f5d04c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Why did the bear never wear shoes?', additional_kwargs={}, example=False)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"id": "f3eaf88a",
"metadata": {},
"source": [
"### Attaching Function Call information"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f94b71b2",
"metadata": {},
"outputs": [],
"source": [
"functions = [\n",
" {\n",
" \"name\": \"joke\",\n",
" \"description\": \"A joke\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"setup\": {\"type\": \"string\", \"description\": \"The setup for the joke\"},\n",
" \"punchline\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The punchline for the joke\",\n",
" },\n",
" },\n",
" \"required\": [\"setup\", \"punchline\"],\n",
" },\n",
" }\n",
"]\n",
"chain = prompt | model.bind(function_call={\"name\": \"joke\"}, functions=functions)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "decf7710",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='', additional_kwargs={'function_call': {'name': 'joke', 'arguments': '{\\n \"setup\": \"Why don\\'t bears wear shoes?\",\\n \"punchline\": \"Because they have bear feet!\"\\n}'}}, example=False)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"}, config={})"
]
},
{
"cell_type": "markdown",
"id": "9098c5ed",
"metadata": {},
"source": [
"## PromptTemplate + LLM + OutputParser\n",
"\n",
"We can also add in an output parser to easily transform the raw LLM/ChatModel output into a more workable format"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cc194c78",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"\n",
"chain = prompt | model | StrOutputParser()"
]
},
{
"cell_type": "markdown",
"id": "77acf448",
"metadata": {},
"source": [
"Notice that this now returns a string - a much more workable format for downstream tasks"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e3d69a18",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why don't bears wear shoes?\\n\\nBecause they have bear feet!\""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"id": "c01864e5",
"metadata": {},
"source": [
"### Functions Output Parser\n",
"\n",
"When you specify the function to return, you may just want to parse that directly"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ad0dd88e",
"metadata": {},
"outputs": [],
"source": [
"from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser\n",
"\n",
"chain = (\n",
" prompt\n",
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
" | JsonOutputFunctionsParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1e7aa8eb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'setup': \"Why don't bears like fast food?\",\n",
" 'punchline': \"Because they can't catch it!\"}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d4aa1a01",
"metadata": {},
"outputs": [],
"source": [
"from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser\n",
"\n",
"chain = (\n",
" prompt\n",
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
" | JsonKeyOutputFunctionsParser(key_name=\"setup\")\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "8b6df9ba",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why don't bears wear shoes?\""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke({\"foo\": \"bears\"})"
]
},
{
"cell_type": "markdown",
"id": "023fbccb-ef7d-489e-a9ba-f98e17283d51",
"metadata": {},
"source": [
"## Simplifying input\n",
"\n",
"To make invocation even simpler, we can add a `RunnableParallel` to take care of creating the prompt input dict for us:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "9601c0f0-71f9-4bd4-a672-7bd04084b018",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n",
"map_ = RunnableParallel(foo=RunnablePassthrough())\n",
"chain = (\n",
" map_\n",
" | prompt\n",
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
" | JsonKeyOutputFunctionsParser(key_name=\"setup\")\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "7ec4f154-fda5-4847-9220-41aa902fdc33",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why don't bears wear shoes?\""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"bears\")"
]
},
{
"cell_type": "markdown",
"id": "def00bfe-0f83-4805-8c8f-8a53f99fa8ea",
"metadata": {},
"source": [
"Since we're composing our map with another Runnable, we can even use some syntactic sugar and just use a dict:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "7bf3846a-02ee-41a3-ba1b-a708827d4f3a",
"metadata": {},
"outputs": [],
"source": [
"chain = (\n",
" {\"foo\": RunnablePassthrough()}\n",
" | prompt\n",
" | model.bind(function_call={\"name\": \"joke\"}, functions=functions)\n",
" | JsonKeyOutputFunctionsParser(key_name=\"setup\")\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "e566d6a1-538d-4cb5-a210-a63e082e4c74",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why don't bears like fast food?\""
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"bears\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

@ -1,537 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "366a0e68-fd67-4fe5-a292-5c33733339ea",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 0\n",
"title: Get started\n",
"keywords: [chain.invoke]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "befa7fd1",
"metadata": {},
"source": [
"LCEL makes it easy to build complex chains from basic components, and supports out of the box functionality such as streaming, parallelism, and logging."
]
},
{
"cell_type": "markdown",
"id": "9a9acd2e",
"metadata": {},
"source": [
"## Basic example: prompt + model + output parser\n",
"\n",
"The most basic and common use case is chaining a prompt template and a model together. To see how this works, let's create a chain that takes a topic and generates a joke:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "278b0027",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain-core langchain-community langchain-openai"
]
},
{
"cell_type": "markdown",
"id": "c3d54f72",
"metadata": {},
"source": [
"```{=mdx}\n",
"import ChatModelTabs from \"@theme/ChatModelTabs\";\n",
"\n",
"<ChatModelTabs openaiParams={`model=\"gpt-4\"`} />\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9eed8e8",
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(model=\"gpt-4\")"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "466b65b3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why don't ice creams ever get invited to parties?\\n\\nBecause they always drip when things heat up!\""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a short joke about {topic}\")\n",
"output_parser = StrOutputParser()\n",
"\n",
"chain = prompt | model | output_parser\n",
"\n",
"chain.invoke({\"topic\": \"ice cream\"})"
]
},
{
"cell_type": "markdown",
"id": "81c502c5-85ee-4f36-aaf4-d6e350b7792f",
"metadata": {},
"source": [
"Notice this line of the code, where we piece together these different components into a single chain using LCEL:\n",
"\n",
"```\n",
"chain = prompt | model | output_parser\n",
"```\n",
"\n",
"The `|` symbol is similar to a [unix pipe operator](https://en.wikipedia.org/wiki/Pipeline_(Unix)), which chains together the different components, feeding the output from one component as input into the next component. \n",
"\n",
"In this chain the user input is passed to the prompt template, then the prompt template output is passed to the model, then the model output is passed to the output parser. Let's take a look at each component individually to really understand what's going on."
]
},
{
"cell_type": "markdown",
"id": "aa1b77fa",
"metadata": {},
"source": [
"### 1. Prompt\n",
"\n",
"`prompt` is a `BasePromptTemplate`, which means it takes in a dictionary of template variables and produces a `PromptValue`. A `PromptValue` is a wrapper around a completed prompt that can be passed to either an `LLM` (which takes a string as input) or `ChatModel` (which takes a sequence of messages as input). It can work with either language model type because it defines logic both for producing `BaseMessage`s and for producing a string."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b8656990",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatPromptValue(messages=[HumanMessage(content='tell me a short joke about ice cream')])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_value = prompt.invoke({\"topic\": \"ice cream\"})\n",
"prompt_value"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e6034488",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='tell me a short joke about ice cream')]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_value.to_messages()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "60565463",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Human: tell me a short joke about ice cream'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prompt_value.to_string()"
]
},
{
"cell_type": "markdown",
"id": "577f0f76",
"metadata": {},
"source": [
"### 2. Model\n",
"\n",
"The `PromptValue` is then passed to `model`. In this case our `model` is a `ChatModel`, meaning it will output a `BaseMessage`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "33cf5f72",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"Why don't ice creams ever get invited to parties?\\n\\nBecause they always bring a melt down!\")"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"message = model.invoke(prompt_value)\n",
"message"
]
},
{
"cell_type": "markdown",
"id": "327e7db8",
"metadata": {},
"source": [
"If our `model` was an `LLM`, it would output a string."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8feb05da",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\nRobot: Why did the ice cream truck break down? Because it had a meltdown!'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_openai import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo-instruct\")\n",
"llm.invoke(prompt_value)"
]
},
{
"cell_type": "markdown",
"id": "91847478",
"metadata": {},
"source": [
"### 3. Output parser\n",
"\n",
"And lastly we pass our `model` output to the `output_parser`, which is a `BaseOutputParser` meaning it takes either a string or a \n",
"`BaseMessage` as input. The specific `StrOutputParser` simply converts any input into a string."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "533e59a8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Why did the ice cream go to therapy? \\n\\nBecause it had too many toppings and couldn't find its cone-fidence!\""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output_parser.invoke(message)"
]
},
{
"cell_type": "markdown",
"id": "9851e842",
"metadata": {},
"source": [
"### 4. Entire Pipeline\n",
"\n",
"To follow the steps along:\n",
"\n",
"1. We pass in user input on the desired topic as `{\"topic\": \"ice cream\"}`\n",
"2. The `prompt` component takes the user input, which is then used to construct a PromptValue after using the `topic` to construct the prompt. \n",
"3. The `model` component takes the generated prompt, and passes into the OpenAI LLM model for evaluation. The generated output from the model is a `ChatMessage` object. \n",
"4. Finally, the `output_parser` component takes in a `ChatMessage`, and transforms this into a Python string, which is returned from the invoke method. \n"
]
},
{
"cell_type": "markdown",
"id": "c4873109",
"metadata": {},
"source": [
"```mermaid\n",
"graph LR\n",
" A(Input: topic=ice cream) --> |Dict| B(PromptTemplate)\n",
" B -->|PromptValue| C(ChatModel) \n",
" C -->|ChatMessage| D(StrOutputParser)\n",
" D --> |String| F(Result)\n",
"```\n"
]
},
{
"cell_type": "markdown",
"id": "fe63534d",
"metadata": {},
"source": [
":::info\n",
"\n",
"Note that if youre curious about the output of any components, you can always test out a smaller version of the chain such as `prompt` or `prompt | model` to see the intermediate results:\n",
"\n",
":::"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11089b6f-23f8-474f-97ec-8cae8d0ca6d4",
"metadata": {},
"outputs": [],
"source": [
"input = {\"topic\": \"ice cream\"}\n",
"\n",
"prompt.invoke(input)\n",
"# > ChatPromptValue(messages=[HumanMessage(content='tell me a short joke about ice cream')])\n",
"\n",
"(prompt | model).invoke(input)\n",
"# > AIMessage(content=\"Why did the ice cream go to therapy?\\nBecause it had too many toppings and couldn't cone-trol itself!\")"
]
},
{
"cell_type": "markdown",
"id": "cc7d3b9d-e400-4c9b-9188-f29dac73e6bb",
"metadata": {},
"source": [
"## RAG Search Example\n",
"\n",
"For our next example, we want to run a retrieval-augmented generation chain to add some context when responding to questions."
]
},
{
"cell_type": "markdown",
"id": "b8fe8eb4",
"metadata": {},
"source": [
"```{=mdx}\n",
"<ChatModelTabs />\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "662426e8-4316-41dc-8312-9b58edc7e0c9",
"metadata": {},
"outputs": [],
"source": [
"# Requires:\n",
"# pip install langchain docarray tiktoken\n",
"\n",
"from langchain_community.vectorstores import DocArrayInMemorySearch\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"vectorstore = DocArrayInMemorySearch.from_texts(\n",
" [\"harrison worked at kensho\", \"bears like to eat honey\"],\n",
" embedding=OpenAIEmbeddings(),\n",
")\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"output_parser = StrOutputParser()\n",
"\n",
"setup_and_retrieval = RunnableParallel(\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
")\n",
"chain = setup_and_retrieval | prompt | model | output_parser\n",
"\n",
"chain.invoke(\"where did harrison work?\")"
]
},
{
"cell_type": "markdown",
"id": "f0999140-6001-423b-970b-adf1dfdb4dec",
"metadata": {},
"source": [
"In this case, the composed chain is: "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5b88e9bb-f04a-4a56-87ec-19a0e6350763",
"metadata": {},
"outputs": [],
"source": [
"chain = setup_and_retrieval | prompt | model | output_parser"
]
},
{
"cell_type": "markdown",
"id": "6e929e15-40a5-4569-8969-384f636cab87",
"metadata": {},
"source": [
"To explain this, we first can see that the prompt template above takes in `context` and `question` as values to be substituted in the prompt. Before building the prompt template, we want to retrieve relevant documents to the search and include them as part of the context. \n",
"\n",
"As a preliminary step, weve setup the retriever using an in memory store, which can retrieve documents based on a query. This is a runnable component as well that can be chained together with other components, but you can also try to run it separately:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7319ef6-613b-4638-ad7d-4a2183702c1d",
"metadata": {},
"outputs": [],
"source": [
"retriever.invoke(\"where did harrison work?\")"
]
},
{
"cell_type": "markdown",
"id": "e6833844-f1c4-444c-a3d2-31b3c6b31d46",
"metadata": {},
"source": [
"We then use the `RunnableParallel` to prepare the expected inputs into the prompt by using the entries for the retrieved documents as well as the original user question, using the retriever for document search, and RunnablePassthrough to pass the users question:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dcbca26b-d6b9-4c24-806c-1ec8fdaab4ed",
"metadata": {},
"outputs": [],
"source": [
"setup_and_retrieval = RunnableParallel(\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
")"
]
},
{
"cell_type": "markdown",
"id": "68c721c1-048b-4a64-9d78-df54fe465992",
"metadata": {},
"source": [
"To review, the complete chain is:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1d5115a7-7b8e-458b-b936-26cc87ee81c4",
"metadata": {},
"outputs": [],
"source": [
"setup_and_retrieval = RunnableParallel(\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
")\n",
"chain = setup_and_retrieval | prompt | model | output_parser"
]
},
{
"cell_type": "markdown",
"id": "5c6f5f74-b387-48a0-bedd-1fae202cd10a",
"metadata": {},
"source": [
"With the flow being:\n",
"\n",
"1. The first steps create a `RunnableParallel` object with two entries. The first entry, `context` will include the document results fetched by the retriever. The second entry, `question` will contain the users original question. To pass on the question, we use `RunnablePassthrough` to copy this entry. \n",
"2. Feed the dictionary from the step above to the `prompt` component. It then takes the user input which is `question` as well as the retrieved document which is `context` to construct a prompt and output a PromptValue. \n",
"3. The `model` component takes the generated prompt, and passes into the OpenAI LLM model for evaluation. The generated output from the model is a `ChatMessage` object. \n",
"4. Finally, the `output_parser` component takes in a `ChatMessage`, and transforms this into a Python string, which is returned from the invoke method.\n",
"\n",
"```mermaid\n",
"graph LR\n",
" A(Question) --> B(RunnableParallel)\n",
" B -->|Question| C(Retriever)\n",
" B -->|Question| D(RunnablePassThrough)\n",
" C -->|context=retrieved docs| E(PromptTemplate)\n",
" D -->|question=Question| E\n",
" E -->|PromptValue| F(ChatModel) \n",
" F -->|ChatMessage| G(StrOutputParser)\n",
" G --> |String| H(Result)\n",
"```\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "8c2438df-164e-4bbe-b5f4-461695e45b0f",
"metadata": {},
"source": [
"## Next steps\n",
"\n",
"We recommend reading our [Advantages of LCEL](/docs/expression_language/why) section next to see a side-by-side comparison of the code needed to produce common functionality with and without LCEL."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -1,136 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "b45110ef",
"metadata": {},
"source": [
"# Create a runnable with the @chain decorator\n",
"\n",
"You can also turn an arbitrary function into a chain by adding a `@chain` decorator. This is functionaly equivalent to wrapping in a [`RunnableLambda`](/docs/expression_language/primitives/functions).\n",
"\n",
"This will have the benefit of improved observability by tracing your chain correctly. Any calls to runnables inside this function will be traced as nested childen.\n",
"\n",
"It will also allow you to use this as any other runnable, compose it in chain, etc.\n",
"\n",
"Let's take a look at this in action!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "23b2b564",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d9370420",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.runnables import chain\n",
"from langchain_openai import ChatOpenAI"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b7f74f7e",
"metadata": {},
"outputs": [],
"source": [
"prompt1 = ChatPromptTemplate.from_template(\"Tell me a joke about {topic}\")\n",
"prompt2 = ChatPromptTemplate.from_template(\"What is the subject of this joke: {joke}\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "2b0365c4",
"metadata": {},
"outputs": [],
"source": [
"@chain\n",
"def custom_chain(text):\n",
" prompt_val1 = prompt1.invoke({\"topic\": text})\n",
" output1 = ChatOpenAI().invoke(prompt_val1)\n",
" parsed_output1 = StrOutputParser().invoke(output1)\n",
" chain2 = prompt2 | ChatOpenAI() | StrOutputParser()\n",
" return chain2.invoke({\"joke\": parsed_output1})"
]
},
{
"cell_type": "markdown",
"id": "904d6872",
"metadata": {},
"source": [
"`custom_chain` is now a runnable, meaning you will need to use `invoke`"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "6448bdd3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The subject of this joke is bears.'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"custom_chain.invoke(\"bears\")"
]
},
{
"cell_type": "markdown",
"id": "aa767ea9",
"metadata": {},
"source": [
"If you check out your LangSmith traces, you should see a `custom_chain` trace in there, with the calls to OpenAI nested underneath"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1245bdc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -1,33 +0,0 @@
---
sidebar_class_name: hidden
---
# LangChain Expression Language (LCEL)
LangChain Expression Language, or LCEL, is a declarative way to easily compose chains together.
LCEL was designed from day 1 to **support putting prototypes in production, with no code changes**, from the simplest “prompt + LLM” chain to the most complex chains (weve seen folks successfully run LCEL chains with 100s of steps in production). To highlight a few of the reasons you might want to use LCEL:
[**First-class streaming support**](/docs/expression_language/streaming)
When you build your chains with LCEL you get the best possible time-to-first-token (time elapsed until the first chunk of output comes out). For some chains this means eg. we stream tokens straight from an LLM to a streaming output parser, and you get back parsed, incremental chunks of output at the same rate as the LLM provider outputs the raw tokens.
[**Async support**](/docs/expression_language/interface)
Any chain built with LCEL can be called both with the synchronous API (eg. in your Jupyter notebook while prototyping) as well as with the asynchronous API (eg. in a [LangServe](/docs/langsmith) server). This enables using the same code for prototypes and in production, with great performance, and the ability to handle many concurrent requests in the same server.
[**Optimized parallel execution**](/docs/expression_language/primitives/parallel)
Whenever your LCEL chains have steps that can be executed in parallel (eg if you fetch documents from multiple retrievers) we automatically do it, both in the sync and the async interfaces, for the smallest possible latency.
[**Retries and fallbacks**](/docs/guides/productionization/fallbacks)
Configure retries and fallbacks for any part of your LCEL chain. This is a great way to make your chains more reliable at scale. Were currently working on adding streaming support for retries/fallbacks, so you can get the added reliability without any latency cost.
[**Access intermediate results**](/docs/expression_language/interface#async-stream-events-beta)
For more complex chains its often very useful to access the results of intermediate steps even before the final output is produced. This can be used to let end-users know something is happening, or even just to debug your chain. You can stream intermediate results, and its available on every [LangServe](/docs/langserve) server.
[**Input and output schemas**](/docs/expression_language/interface#input-schema)
Input and output schemas give every LCEL chain Pydantic and JSONSchema schemas inferred from the structure of your chain. This can be used for validation of inputs and outputs, and is an integral part of LangServe.
[**Seamless LangSmith tracing**](/docs/langsmith)
As your chains get more and more complex, it becomes increasingly important to understand what exactly is happening at every step.
With LCEL, **all** steps are automatically logged to [LangSmith](/docs/langsmith/) for maximum observability and debuggability.
[**Seamless LangServe deployment**](/docs/langserve)
Any chain created with LCEL can be easily deployed using [LangServe](/docs/langserve).

File diff suppressed because it is too large Load Diff

@ -1,15 +0,0 @@
---
sidebar_class_name: hidden
---
# Primitives
In addition to various [components](/docs/modules) that are usable with LCEL, LangChain also includes various primitives
that help pass around and format data, bind arguments, invoke custom logic, and more.
This section goes into greater depth on where and how some of these components are useful.
import DocCardList from "@theme/DocCardList";
import { useCurrentSidebarCategory } from '@docusaurus/theme-common';
<DocCardList items={useCurrentSidebarCategory().items.filter((item) => item.href !== "/docs/expression_language/primitives/")} />

File diff suppressed because it is too large Load Diff

@ -1,685 +0,0 @@
---
sidebar_position: 1
---
# Quickstart
In this quickstart we'll show you how to:
- Get setup with LangChain, LangSmith and LangServe
- Use the most basic and common components of LangChain: prompt templates, models, and output parsers
- Use LangChain Expression Language, the protocol that LangChain is built on and which facilitates component chaining
- Build a simple application with LangChain
- Trace your application with LangSmith
- Serve your application with LangServe
That's a fair amount to cover! Let's dive in.
## Setup
### Jupyter Notebook
This guide (and most of the other guides in the documentation) uses [Jupyter notebooks](https://jupyter.org/) and assumes the reader is as well. Jupyter notebooks are perfect for learning how to work with LLM systems because oftentimes things can go wrong (unexpected output, API down, etc) and going through guides in an interactive environment is a great way to better understand them.
You do not NEED to go through the guide in a Jupyter Notebook, but it is recommended. See [here](https://jupyter.org/install) for instructions on how to install.
### Installation
To install LangChain run:
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import CodeBlock from "@theme/CodeBlock";
<Tabs>
<TabItem value="pip" label="Pip" default>
<CodeBlock language="bash">pip install langchain</CodeBlock>
</TabItem>
<TabItem value="conda" label="Conda">
<CodeBlock language="bash">conda install langchain -c conda-forge</CodeBlock>
</TabItem>
</Tabs>
For more details, see our [Installation guide](/docs/get_started/installation).
### LangSmith
Many of the applications you build with LangChain will contain multiple steps with multiple invocations of LLM calls.
As these applications get more and more complex, it becomes crucial to be able to inspect what exactly is going on inside your chain or agent.
The best way to do this is with [LangSmith](https://smith.langchain.com).
Note that LangSmith is not needed, but it is helpful.
If you do want to use LangSmith, after you sign up at the link above, make sure to set your environment variables to start logging traces:
```shell
export LANGCHAIN_TRACING_V2="true"
export LANGCHAIN_API_KEY="..."
```
## Building with LangChain
LangChain enables building application that connect external sources of data and computation to LLMs.
In this quickstart, we will walk through a few different ways of doing that.
We will start with a simple LLM chain, which just relies on information in the prompt template to respond.
Next, we will build a retrieval chain, which fetches data from a separate database and passes that into the prompt template.
We will then add in chat history, to create a conversation retrieval chain. This allows you to interact in a chat manner with this LLM, so it remembers previous questions.
Finally, we will build an agent - which utilizes an LLM to determine whether or not it needs to fetch data to answer questions.
We will cover these at a high level, but there are lot of details to all of these!
We will link to relevant docs.
## LLM Chain
We'll show how to use models available via API, like OpenAI, and local open source models, using integrations like Ollama.
<Tabs>
<TabItem value="openai" label="OpenAI" default>
First we'll need to import the LangChain x OpenAI integration package.
```shell
pip install langchain-openai
```
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://platform.openai.com/account/api-keys). Once we have a key we'll want to set it as an environment variable by running:
```shell
export OPENAI_API_KEY="..."
```
We can then initialize the model:
```python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI()
```
If you'd prefer not to set an environment variable you can pass the key in directly via the `openai_api_key` named parameter when initiating the OpenAI LLM class:
```python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(openai_api_key="...")
```
</TabItem>
<TabItem value="local" label="Local (using Ollama)">
[Ollama](https://ollama.ai/) allows you to run open-source large language models, such as Llama 2, locally.
First, follow [these instructions](https://github.com/jmorganca/ollama) to set up and run a local Ollama instance:
* [Download](https://ollama.ai/download)
* Fetch a model via `ollama pull llama2`
Then, make sure the Ollama server is running. After that, you can do:
```python
from langchain_community.llms import Ollama
llm = Ollama(model="llama2")
```
</TabItem>
<TabItem value="anthropic" label="Anthropic">
First we'll need to import the LangChain x Anthropic package.
```shell
pip install langchain-anthropic
```
Accessing the API requires an API key, which you can get by creating an account [here](https://claude.ai/login). Once we have a key we'll want to set it as an environment variable by running:
```shell
export ANTHROPIC_API_KEY="..."
```
We can then initialize the model:
```python
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-sonnet-20240229", temperature=0.2, max_tokens=1024)
```
If you'd prefer not to set an environment variable you can pass the key in directly via the `anthropic_api_key` named parameter when initiating the Anthropic Chat Model class:
```python
llm = ChatAnthropic(anthropic_api_key="...")
```
</TabItem>
<TabItem value="cohere" label="Cohere">
First we'll need to import the Cohere SDK package.
```shell
pip install langchain-cohere
```
Accessing the API requires an API key, which you can get by creating an account and heading [here](https://dashboard.cohere.com/api-keys). Once we have a key we'll want to set it as an environment variable by running:
```shell
export COHERE_API_KEY="..."
```
We can then initialize the model:
```python
from langchain_cohere import ChatCohere
llm = ChatCohere()
```
If you'd prefer not to set an environment variable you can pass the key in directly via the `cohere_api_key` named parameter when initiating the Cohere LLM class:
```python
from langchain_cohere import ChatCohere
llm = ChatCohere(cohere_api_key="...")
```
</TabItem>
</Tabs>
Once you've installed and initialized the LLM of your choice, we can try using it!
Let's ask it what LangSmith is - this is something that wasn't present in the training data so it shouldn't have a very good response.
```python
llm.invoke("how can langsmith help with testing?")
```
We can also guide its response with a prompt template.
Prompt templates convert raw user input to better input to the LLM.
```python
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([
("system", "You are world class technical documentation writer."),
("user", "{input}")
])
```
We can now combine these into a simple LLM chain:
```python
chain = prompt | llm
```
We can now invoke it and ask the same question. It still won't know the answer, but it should respond in a more proper tone for a technical writer!
```python
chain.invoke({"input": "how can langsmith help with testing?"})
```
The output of a ChatModel (and therefore, of this chain) is a message. However, it's often much more convenient to work with strings. Let's add a simple output parser to convert the chat message to a string.
```python
from langchain_core.output_parsers import StrOutputParser
output_parser = StrOutputParser()
```
We can now add this to the previous chain:
```python
chain = prompt | llm | output_parser
```
We can now invoke it and ask the same question. The answer will now be a string (rather than a ChatMessage).
```python
chain.invoke({"input": "how can langsmith help with testing?"})
```
### Diving Deeper
We've now successfully set up a basic LLM chain. We only touched on the basics of prompts, models, and output parsers - for a deeper dive into everything mentioned here, see [this section of documentation](/docs/modules/model_io).
## Retrieval Chain
To properly answer the original question ("how can langsmith help with testing?"), we need to provide additional context to the LLM.
We can do this via *retrieval*.
Retrieval is useful when you have **too much data** to pass to the LLM directly.
You can then use a retriever to fetch only the most relevant pieces and pass those in.
In this process, we will look up relevant documents from a *Retriever* and then pass them into the prompt.
A Retriever can be backed by anything - a SQL table, the internet, etc - but in this instance we will populate a vector store and use that as a retriever. For more information on vectorstores, see [this documentation](/docs/modules/data_connection/vectorstores).
First, we need to load the data that we want to index. To do this, we will use the WebBaseLoader. This requires installing [BeautifulSoup](https://beautiful-soup-4.readthedocs.io/en/latest/):
```shell
pip install beautifulsoup4
```
After that, we can import and use WebBaseLoader.
```python
from langchain_community.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://docs.smith.langchain.com/user_guide")
docs = loader.load()
```
Next, we need to index it into a vectorstore. This requires a few components, namely an [embedding model](/docs/modules/data_connection/text_embedding) and a [vectorstore](/docs/modules/data_connection/vectorstores).
For embedding models, we once again provide examples for accessing via API or by running local models.
<Tabs>
<TabItem value="openai" label="OpenAI (API)" default>
Make sure you have the `langchain_openai` package installed an the appropriate environment variables set (these are the same as needed for the LLM).
```python
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
```
</TabItem>
<TabItem value="local" label="Local (using Ollama)">
Make sure you have Ollama running (same set up as with the LLM).
```python
from langchain_community.embeddings import OllamaEmbeddings
embeddings = OllamaEmbeddings()
```
</TabItem>
<TabItem value="cohere" label="Cohere (API)" default>
Make sure you have the `cohere` package installed and the appropriate environment variables set (these are the same as needed for the LLM).
```python
from langchain_community.embeddings import CohereEmbeddings
embeddings = CohereEmbeddings()
```
</TabItem>
</Tabs>
Now, we can use this embedding model to ingest documents into a vectorstore.
We will use a simple local vectorstore, [FAISS](/docs/integrations/vectorstores/faiss), for simplicity's sake.
First we need to install the required packages for that:
```shell
pip install faiss-cpu
```
Then we can build our index:
```python
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter()
documents = text_splitter.split_documents(docs)
vector = FAISS.from_documents(documents, embeddings)
```
Now that we have this data indexed in a vectorstore, we will create a retrieval chain.
This chain will take an incoming question, look up relevant documents, then pass those documents along with the original question into an LLM and ask it to answer the original question.
First, let's set up the chain that takes a question and the retrieved documents and generates an answer.
```python
from langchain.chains.combine_documents import create_stuff_documents_chain
prompt = ChatPromptTemplate.from_template("""Answer the following question based only on the provided context:
<context>
{context}
</context>
Question: {input}""")
document_chain = create_stuff_documents_chain(llm, prompt)
```
If we wanted to, we could run this ourselves by passing in documents directly:
```python
from langchain_core.documents import Document
document_chain.invoke({
"input": "how can langsmith help with testing?",
"context": [Document(page_content="langsmith can let you visualize test results")]
})
```
However, we want the documents to first come from the retriever we just set up.
That way, we can use the retriever to dynamically select the most relevant documents and pass those in for a given question.
```python
from langchain.chains import create_retrieval_chain
retriever = vector.as_retriever()
retrieval_chain = create_retrieval_chain(retriever, document_chain)
```
We can now invoke this chain. This returns a dictionary - the response from the LLM is in the `answer` key
```python
response = retrieval_chain.invoke({"input": "how can langsmith help with testing?"})
print(response["answer"])
# LangSmith offers several features that can help with testing:...
```
This answer should be much more accurate!
### Diving Deeper
We've now successfully set up a basic retrieval chain. We only touched on the basics of retrieval - for a deeper dive into everything mentioned here, see [this section of documentation](/docs/modules/data_connection).
## Conversation Retrieval Chain
The chain we've created so far can only answer single questions. One of the main types of LLM applications that people are building are chat bots. So how do we turn this chain into one that can answer follow up questions?
We can still use the `create_retrieval_chain` function, but we need to change two things:
1. The retrieval method should now not just work on the most recent input, but rather should take the whole history into account.
2. The final LLM chain should likewise take the whole history into account
**Updating Retrieval**
In order to update retrieval, we will create a new chain. This chain will take in the most recent input (`input`) and the conversation history (`chat_history`) and use an LLM to generate a search query.
```python
from langchain.chains import create_history_aware_retriever
from langchain_core.prompts import MessagesPlaceholder
# First we need a prompt that we can pass into an LLM to generate this search query
prompt = ChatPromptTemplate.from_messages([
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
("user", "Given the above conversation, generate a search query to look up to get information relevant to the conversation")
])
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
```
We can test this out by passing in an instance where the user asks a follow-up question.
```python
from langchain_core.messages import HumanMessage, AIMessage
chat_history = [HumanMessage(content="Can LangSmith help test my LLM applications?"), AIMessage(content="Yes!")]
retriever_chain.invoke({
"chat_history": chat_history,
"input": "Tell me how"
})
```
You should see that this returns documents about testing in LangSmith. This is because the LLM generated a new query, combining the chat history with the follow-up question.
Now that we have this new retriever, we can create a new chain to continue the conversation with these retrieved documents in mind.
```python
prompt = ChatPromptTemplate.from_messages([
("system", "Answer the user's questions based on the below context:\n\n{context}"),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
])
document_chain = create_stuff_documents_chain(llm, prompt)
retrieval_chain = create_retrieval_chain(retriever_chain, document_chain)
```
We can now test this out end-to-end:
```python
chat_history = [HumanMessage(content="Can LangSmith help test my LLM applications?"), AIMessage(content="Yes!")]
retrieval_chain.invoke({
"chat_history": chat_history,
"input": "Tell me how"
})
```
We can see that this gives a coherent answer - we've successfully turned our retrieval chain into a chatbot!
## Agent
We've so far created examples of chains - where each step is known ahead of time.
The final thing we will create is an agent - where the LLM decides what steps to take.
**NOTE: for this example we will only show how to create an agent using OpenAI models, as local models are not reliable enough yet.**
One of the first things to do when building an agent is to decide what tools it should have access to.
For this example, we will give the agent access to two tools:
1. The retriever we just created. This will let it easily answer questions about LangSmith
2. A search tool. This will let it easily answer questions that require up-to-date information.
First, let's set up a tool for the retriever we just created:
```python
from langchain.tools.retriever import create_retriever_tool
retriever_tool = create_retriever_tool(
retriever,
"langsmith_search",
"Search for information about LangSmith. For any questions about LangSmith, you must use this tool!",
)
```
The search tool that we will use is [Tavily](/docs/integrations/retrievers/tavily). This will require an API key (they have generous free tier). After creating it on their platform, you need to set it as an environment variable:
```shell
export TAVILY_API_KEY=...
```
If you do not want to set up an API key, you can skip creating this tool.
```python
from langchain_community.tools.tavily_search import TavilySearchResults
search = TavilySearchResults()
```
We can now create a list of the tools we want to work with:
```python
tools = [retriever_tool, search]
```
Now that we have the tools, we can create an agent to use them. We will go over this pretty quickly - for a deeper dive into what exactly is going on, check out the [Agent's Getting Started documentation](/docs/modules/agents)
Install langchain hub first
```bash
pip install langchainhub
```
Install the langchain-openai package
To interact with OpenAI we need to use langchain-openai which connects with OpenAI SDK[https://github.com/langchain-ai/langchain/tree/master/libs/partners/openai].
```bash
pip install langchain-openai
```
Now we can use it to get a predefined prompt
```python
from langchain_openai import ChatOpenAI
from langchain import hub
from langchain.agents import create_openai_functions_agent
from langchain.agents import AgentExecutor
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-functions-agent")
# You need to set OPENAI_API_KEY environment variable or pass it as argument `openai_api_key`.
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
```
We can now invoke the agent and see how it responds! We can ask it questions about LangSmith:
```python
agent_executor.invoke({"input": "how can langsmith help with testing?"})
```
We can ask it about the weather:
```python
agent_executor.invoke({"input": "what is the weather in SF?"})
```
We can have conversations with it:
```python
chat_history = [HumanMessage(content="Can LangSmith help test my LLM applications?"), AIMessage(content="Yes!")]
agent_executor.invoke({
"chat_history": chat_history,
"input": "Tell me how"
})
```
### Diving Deeper
We've now successfully set up a basic agent. We only touched on the basics of agents - for a deeper dive into everything mentioned here, see [this section of documentation](/docs/modules/agents).
## Serving with LangServe
Now that we've built an application, we need to serve it. That's where LangServe comes in.
LangServe helps developers deploy LangChain chains as a REST API. You do not need to use LangServe to use LangChain, but in this guide we'll show how you can deploy your app with LangServe.
While the first part of this guide was intended to be run in a Jupyter Notebook, we will now move out of that. We will be creating a Python file and then interacting with it from the command line.
Install with:
```bash
pip install "langserve[all]"
```
### Server
To create a server for our application we'll make a `serve.py` file. This will contain our logic for serving our application. It consists of three things:
1. The definition of our chain that we just built above
2. Our FastAPI app
3. A definition of a route from which to serve the chain, which is done with `langserve.add_routes`
```python
#!/usr/bin/env python
from typing import List
from fastapi import FastAPI
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import WebBaseLoader
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.tools.retriever import create_retriever_tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain import hub
from langchain.agents import create_openai_functions_agent
from langchain.agents import AgentExecutor
from langchain.pydantic_v1 import BaseModel, Field
from langchain_core.messages import BaseMessage
from langserve import add_routes
# 1. Load Retriever
loader = WebBaseLoader("https://docs.smith.langchain.com/user_guide")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter()
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
vector = FAISS.from_documents(documents, embeddings)
retriever = vector.as_retriever()
# 2. Create Tools
retriever_tool = create_retriever_tool(
retriever,
"langsmith_search",
"Search for information about LangSmith. For any questions about LangSmith, you must use this tool!",
)
search = TavilySearchResults()
tools = [retriever_tool, search]
# 3. Create Agent
prompt = hub.pull("hwchase17/openai-functions-agent")
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
# 4. App definition
app = FastAPI(
title="LangChain Server",
version="1.0",
description="A simple API server using LangChain's Runnable interfaces",
)
# 5. Adding chain route
# We need to add these input/output schemas because the current AgentExecutor
# is lacking in schemas.
class Input(BaseModel):
input: str
chat_history: List[BaseMessage] = Field(
...,
extra={"widget": {"type": "chat", "input": "location"}},
)
class Output(BaseModel):
output: str
add_routes(
app,
agent_executor.with_types(input_type=Input, output_type=Output),
path="/agent",
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="localhost", port=8000)
```
And that's it! If we execute this file:
```bash
python serve.py
```
we should see our chain being served at localhost:8000.
### Playground
Every LangServe service comes with a simple built-in UI for configuring and invoking the application with streaming output and visibility into intermediate steps.
Head to http://localhost:8000/agent/playground/ to try it out! Pass in the same question as before - "how can langsmith help with testing?" - and it should respond same as before.
### Client
Now let's set up a client for programmatically interacting with our service. We can easily do this with the `[langserve.RemoteRunnable](/docs/langserve#client)`.
Using this, we can interact with the served chain as if it were running client-side.
```python
from langserve import RemoteRunnable
remote_chain = RemoteRunnable("http://localhost:8000/agent/")
remote_chain.invoke({
"input": "how can langsmith help with testing?",
"chat_history": [] # Providing an empty list as this is the first call
})
```
To learn more about the many other features of LangServe [head here](/docs/langserve).
## Next steps
We've touched on how to build an application with LangChain, how to trace it with LangSmith, and how to serve it with LangServe.
There are a lot more features in all three of these than we can cover here.
To continue on your journey, we recommend you read the following (in order):
- All of these features are backed by [LangChain Expression Language (LCEL)](/docs/expression_language) - a way to chain these components together. Check out that documentation to better understand how to create custom chains.
- [Model IO](/docs/modules/model_io) covers more details of prompts, LLMs, and output parsers.
- [Retrieval](/docs/modules/data_connection) covers more details of everything related to retrieval
- [Agents](/docs/modules/agents) covers details of everything related to agents
- Explore common [end-to-end use cases](/docs/use_cases/) and [template applications](/docs/templates)
- [Read up on LangSmith](/docs/langsmith/), the platform for debugging, testing, monitoring and more
- Learn more about serving your applications with [LangServe](/docs/langserve)

@ -1,661 +0,0 @@
# Debugging
If you're building with LLMs, at some point something will break, and you'll need to debug. A model call will fail, or the model output will be misformatted, or there will be some nested model calls and it won't be clear where along the way an incorrect output was created.
Here are a few different tools and functionalities to aid in debugging.
## Tracing
Platforms with tracing capabilities like [LangSmith](/docs/langsmith/) are the most comprehensive solutions for debugging. These platforms make it easy to not only log and visualize LLM apps, but also to actively debug, test and refine them.
When building production-grade LLM applications, platforms like this are essential.
![Screenshot of the LangSmith debugging interface showing an AgentExecutor run with input and output details, and a run tree visualization.](../../../static/img/run_details.png "LangSmith Debugging Interface")
## `set_debug` and `set_verbose`
If you're prototyping in Jupyter Notebooks or running Python scripts, it can be helpful to print out the intermediate steps of a Chain run.
There are a number of ways to enable printing at varying degrees of verbosity.
Let's suppose we have a simple agent, and want to visualize the actions it takes and tool outputs it receives. Without any debugging, here's what we see:
```python
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
tools = load_tools(["ddg-search", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)
```
```python
agent.run("Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?")
```
<CodeOutputBlock lang="python">
```
'The director of the 2023 film Oppenheimer is Christopher Nolan and he is approximately 19345 days old in 2023.'
```
</CodeOutputBlock>
### `set_debug(True)`
Setting the global `debug` flag will cause all LangChain components with callback support (chains, models, agents, tools, retrievers) to print the inputs they receive and outputs they generate. This is the most verbose setting and will fully log raw inputs and outputs.
```python
from langchain.globals import set_debug
set_debug(True)
agent.run("Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?")
```
<details> <summary>Console output</summary>
<CodeOutputBlock lang="python">
```
[chain/start] [1:RunTypeEnum.chain:AgentExecutor] Entering Chain run with input:
{
"input": "Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?"
}
[chain/start] [1:RunTypeEnum.chain:AgentExecutor > 2:RunTypeEnum.chain:LLMChain] Entering Chain run with input:
{
"input": "Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?",
"agent_scratchpad": "",
"stop": [
"\nObservation:",
"\n\tObservation:"
]
}
[llm/start] [1:RunTypeEnum.chain:AgentExecutor > 2:RunTypeEnum.chain:LLMChain > 3:RunTypeEnum.llm:ChatOpenAI] Entering LLM run with input:
{
"prompts": [
"Human: Answer the following questions as best you can. You have access to the following tools:\n\nduckduckgo_search: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.\nCalculator: Useful for when you need to answer questions about math.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [duckduckgo_search, Calculator]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?\nThought:"
]
}
[llm/end] [1:RunTypeEnum.chain:AgentExecutor > 2:RunTypeEnum.chain:LLMChain > 3:RunTypeEnum.llm:ChatOpenAI] [5.53s] Exiting LLM run with output:
{
"generations": [
[
{
"text": "I need to find out who directed the 2023 film Oppenheimer and their age. Then, I need to calculate their age in days. I will use DuckDuckGo to find out the director and their age.\nAction: duckduckgo_search\nAction Input: \"Director of the 2023 film Oppenheimer and their age\"",
"generation_info": {
"finish_reason": "stop"
},
"message": {
"lc": 1,
"type": "constructor",
"id": [
"langchain",
"schema",
"messages",
"AIMessage"
],
"kwargs": {
"content": "I need to find out who directed the 2023 film Oppenheimer and their age. Then, I need to calculate their age in days. I will use DuckDuckGo to find out the director and their age.\nAction: duckduckgo_search\nAction Input: \"Director of the 2023 film Oppenheimer and their age\"",
"additional_kwargs": {}
}
}
}
]
],
"llm_output": {
"token_usage": {
"prompt_tokens": 206,
"completion_tokens": 71,
"total_tokens": 277
},
"model_name": "gpt-4"
},
"run": null
}
[chain/end] [1:RunTypeEnum.chain:AgentExecutor > 2:RunTypeEnum.chain:LLMChain] [5.53s] Exiting Chain run with output:
{
"text": "I need to find out who directed the 2023 film Oppenheimer and their age. Then, I need to calculate their age in days. I will use DuckDuckGo to find out the director and their age.\nAction: duckduckgo_search\nAction Input: \"Director of the 2023 film Oppenheimer and their age\""
}
[tool/start] [1:RunTypeEnum.chain:AgentExecutor > 4:RunTypeEnum.tool:duckduckgo_search] Entering Tool run with input:
"Director of the 2023 film Oppenheimer and their age"
[tool/end] [1:RunTypeEnum.chain:AgentExecutor > 4:RunTypeEnum.tool:duckduckgo_search] [1.51s] Exiting Tool run with output:
"Capturing the mad scramble to build the first atomic bomb required rapid-fire filming, strict set rules and the construction of an entire 1940s western town. By Jada Yuan. July 19, 2023 at 5:00 a ... In Christopher Nolan's new film, "Oppenheimer," Cillian Murphy stars as J. Robert Oppenheimer, the American physicist who oversaw the Manhattan Project in Los Alamos, N.M. Universal Pictures... Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. Christopher Nolan goes deep on 'Oppenheimer,' his most 'extreme' film to date. By Kenneth Turan. July 11, 2023 5 AM PT. For Subscribers. Christopher Nolan is photographed in Los Angeles ... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age."
[chain/start] [1:RunTypeEnum.chain:AgentExecutor > 5:RunTypeEnum.chain:LLMChain] Entering Chain run with input:
{
"input": "Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?",
"agent_scratchpad": "I need to find out who directed the 2023 film Oppenheimer and their age. Then, I need to calculate their age in days. I will use DuckDuckGo to find out the director and their age.\nAction: duckduckgo_search\nAction Input: \"Director of the 2023 film Oppenheimer and their age\"\nObservation: Capturing the mad scramble to build the first atomic bomb required rapid-fire filming, strict set rules and the construction of an entire 1940s western town. By Jada Yuan. July 19, 2023 at 5:00 a ... In Christopher Nolan's new film, \"Oppenheimer,\" Cillian Murphy stars as J. Robert Oppenheimer, the American physicist who oversaw the Manhattan Project in Los Alamos, N.M. Universal Pictures... Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. Christopher Nolan goes deep on 'Oppenheimer,' his most 'extreme' film to date. By Kenneth Turan. July 11, 2023 5 AM PT. For Subscribers. Christopher Nolan is photographed in Los Angeles ... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.\nThought:",
"stop": [
"\nObservation:",
"\n\tObservation:"
]
}
[llm/start] [1:RunTypeEnum.chain:AgentExecutor > 5:RunTypeEnum.chain:LLMChain > 6:RunTypeEnum.llm:ChatOpenAI] Entering LLM run with input:
{
"prompts": [
"Human: Answer the following questions as best you can. You have access to the following tools:\n\nduckduckgo_search: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.\nCalculator: Useful for when you need to answer questions about math.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [duckduckgo_search, Calculator]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?\nThought:I need to find out who directed the 2023 film Oppenheimer and their age. Then, I need to calculate their age in days. I will use DuckDuckGo to find out the director and their age.\nAction: duckduckgo_search\nAction Input: \"Director of the 2023 film Oppenheimer and their age\"\nObservation: Capturing the mad scramble to build the first atomic bomb required rapid-fire filming, strict set rules and the construction of an entire 1940s western town. By Jada Yuan. July 19, 2023 at 5:00 a ... In Christopher Nolan's new film, \"Oppenheimer,\" Cillian Murphy stars as J. Robert Oppenheimer, the American physicist who oversaw the Manhattan Project in Los Alamos, N.M. Universal Pictures... Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. Christopher Nolan goes deep on 'Oppenheimer,' his most 'extreme' film to date. By Kenneth Turan. July 11, 2023 5 AM PT. For Subscribers. Christopher Nolan is photographed in Los Angeles ... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.\nThought:"
]
}
[llm/end] [1:RunTypeEnum.chain:AgentExecutor > 5:RunTypeEnum.chain:LLMChain > 6:RunTypeEnum.llm:ChatOpenAI] [4.46s] Exiting LLM run with output:
{
"generations": [
[
{
"text": "The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his age.\nAction: duckduckgo_search\nAction Input: \"Christopher Nolan age\"",
"generation_info": {
"finish_reason": "stop"
},
"message": {
"lc": 1,
"type": "constructor",
"id": [
"langchain",
"schema",
"messages",
"AIMessage"
],
"kwargs": {
"content": "The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his age.\nAction: duckduckgo_search\nAction Input: \"Christopher Nolan age\"",
"additional_kwargs": {}
}
}
}
]
],
"llm_output": {
"token_usage": {
"prompt_tokens": 550,
"completion_tokens": 39,
"total_tokens": 589
},
"model_name": "gpt-4"
},
"run": null
}
[chain/end] [1:RunTypeEnum.chain:AgentExecutor > 5:RunTypeEnum.chain:LLMChain] [4.46s] Exiting Chain run with output:
{
"text": "The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his age.\nAction: duckduckgo_search\nAction Input: \"Christopher Nolan age\""
}
[tool/start] [1:RunTypeEnum.chain:AgentExecutor > 7:RunTypeEnum.tool:duckduckgo_search] Entering Tool run with input:
"Christopher Nolan age"
[tool/end] [1:RunTypeEnum.chain:AgentExecutor > 7:RunTypeEnum.tool:duckduckgo_search] [1.33s] Exiting Tool run with output:
"Christopher Edward Nolan CBE (born 30 July 1970) is a British and American filmmaker. Known for his Hollywood blockbusters with complex storytelling, Nolan is considered a leading filmmaker of the 21st century. His films have grossed $5 billion worldwide. The recipient of many accolades, he has been nominated for five Academy Awards, five BAFTA Awards and six Golden Globe Awards. July 30, 1970 (age 52) London England Notable Works: "Dunkirk" "Tenet" "The Prestige" See all related content → Recent News Jul. 13, 2023, 11:11 AM ET (AP) Cillian Murphy, playing Oppenheimer, finally gets to lead a Christopher Nolan film July 11, 2023 5 AM PT For Subscribers Christopher Nolan is photographed in Los Angeles. (Joe Pugliese / For The Times) This is not the story I was supposed to write. Oppenheimer director Christopher Nolan, Cillian Murphy, Emily Blunt and Matt Damon on the stakes of making a three-hour, CGI-free summer film. Christopher Nolan, the director behind such films as "Dunkirk," "Inception," "Interstellar," and the "Dark Knight" trilogy, has spent the last three years living in Oppenheimer's world, writing ..."
[chain/start] [1:RunTypeEnum.chain:AgentExecutor > 8:RunTypeEnum.chain:LLMChain] Entering Chain run with input:
{
"input": "Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?",
"agent_scratchpad": "I need to find out who directed the 2023 film Oppenheimer and their age. Then, I need to calculate their age in days. I will use DuckDuckGo to find out the director and their age.\nAction: duckduckgo_search\nAction Input: \"Director of the 2023 film Oppenheimer and their age\"\nObservation: Capturing the mad scramble to build the first atomic bomb required rapid-fire filming, strict set rules and the construction of an entire 1940s western town. By Jada Yuan. July 19, 2023 at 5:00 a ... In Christopher Nolan's new film, \"Oppenheimer,\" Cillian Murphy stars as J. Robert Oppenheimer, the American physicist who oversaw the Manhattan Project in Los Alamos, N.M. Universal Pictures... Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. Christopher Nolan goes deep on 'Oppenheimer,' his most 'extreme' film to date. By Kenneth Turan. July 11, 2023 5 AM PT. For Subscribers. Christopher Nolan is photographed in Los Angeles ... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.\nThought:The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his age.\nAction: duckduckgo_search\nAction Input: \"Christopher Nolan age\"\nObservation: Christopher Edward Nolan CBE (born 30 July 1970) is a British and American filmmaker. Known for his Hollywood blockbusters with complex storytelling, Nolan is considered a leading filmmaker of the 21st century. His films have grossed $5 billion worldwide. The recipient of many accolades, he has been nominated for five Academy Awards, five BAFTA Awards and six Golden Globe Awards. July 30, 1970 (age 52) London England Notable Works: \"Dunkirk\" \"Tenet\" \"The Prestige\" See all related content → Recent News Jul. 13, 2023, 11:11 AM ET (AP) Cillian Murphy, playing Oppenheimer, finally gets to lead a Christopher Nolan film July 11, 2023 5 AM PT For Subscribers Christopher Nolan is photographed in Los Angeles. (Joe Pugliese / For The Times) This is not the story I was supposed to write. Oppenheimer director Christopher Nolan, Cillian Murphy, Emily Blunt and Matt Damon on the stakes of making a three-hour, CGI-free summer film. Christopher Nolan, the director behind such films as \"Dunkirk,\" \"Inception,\" \"Interstellar,\" and the \"Dark Knight\" trilogy, has spent the last three years living in Oppenheimer's world, writing ...\nThought:",
"stop": [
"\nObservation:",
"\n\tObservation:"
]
}
[llm/start] [1:RunTypeEnum.chain:AgentExecutor > 8:RunTypeEnum.chain:LLMChain > 9:RunTypeEnum.llm:ChatOpenAI] Entering LLM run with input:
{
"prompts": [
"Human: Answer the following questions as best you can. You have access to the following tools:\n\nduckduckgo_search: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.\nCalculator: Useful for when you need to answer questions about math.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [duckduckgo_search, Calculator]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?\nThought:I need to find out who directed the 2023 film Oppenheimer and their age. Then, I need to calculate their age in days. I will use DuckDuckGo to find out the director and their age.\nAction: duckduckgo_search\nAction Input: \"Director of the 2023 film Oppenheimer and their age\"\nObservation: Capturing the mad scramble to build the first atomic bomb required rapid-fire filming, strict set rules and the construction of an entire 1940s western town. By Jada Yuan. July 19, 2023 at 5:00 a ... In Christopher Nolan's new film, \"Oppenheimer,\" Cillian Murphy stars as J. Robert Oppenheimer, the American physicist who oversaw the Manhattan Project in Los Alamos, N.M. Universal Pictures... Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. Christopher Nolan goes deep on 'Oppenheimer,' his most 'extreme' film to date. By Kenneth Turan. July 11, 2023 5 AM PT. For Subscribers. Christopher Nolan is photographed in Los Angeles ... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.\nThought:The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his age.\nAction: duckduckgo_search\nAction Input: \"Christopher Nolan age\"\nObservation: Christopher Edward Nolan CBE (born 30 July 1970) is a British and American filmmaker. Known for his Hollywood blockbusters with complex storytelling, Nolan is considered a leading filmmaker of the 21st century. His films have grossed $5 billion worldwide. The recipient of many accolades, he has been nominated for five Academy Awards, five BAFTA Awards and six Golden Globe Awards. July 30, 1970 (age 52) London England Notable Works: \"Dunkirk\" \"Tenet\" \"The Prestige\" See all related content → Recent News Jul. 13, 2023, 11:11 AM ET (AP) Cillian Murphy, playing Oppenheimer, finally gets to lead a Christopher Nolan film July 11, 2023 5 AM PT For Subscribers Christopher Nolan is photographed in Los Angeles. (Joe Pugliese / For The Times) This is not the story I was supposed to write. Oppenheimer director Christopher Nolan, Cillian Murphy, Emily Blunt and Matt Damon on the stakes of making a three-hour, CGI-free summer film. Christopher Nolan, the director behind such films as \"Dunkirk,\" \"Inception,\" \"Interstellar,\" and the \"Dark Knight\" trilogy, has spent the last three years living in Oppenheimer's world, writing ...\nThought:"
]
}
[llm/end] [1:RunTypeEnum.chain:AgentExecutor > 8:RunTypeEnum.chain:LLMChain > 9:RunTypeEnum.llm:ChatOpenAI] [2.69s] Exiting LLM run with output:
{
"generations": [
[
{
"text": "Christopher Nolan was born on July 30, 1970, which makes him 52 years old in 2023. Now I need to calculate his age in days.\nAction: Calculator\nAction Input: 52*365",
"generation_info": {
"finish_reason": "stop"
},
"message": {
"lc": 1,
"type": "constructor",
"id": [
"langchain",
"schema",
"messages",
"AIMessage"
],
"kwargs": {
"content": "Christopher Nolan was born on July 30, 1970, which makes him 52 years old in 2023. Now I need to calculate his age in days.\nAction: Calculator\nAction Input: 52*365",
"additional_kwargs": {}
}
}
}
]
],
"llm_output": {
"token_usage": {
"prompt_tokens": 868,
"completion_tokens": 46,
"total_tokens": 914
},
"model_name": "gpt-4"
},
"run": null
}
[chain/end] [1:RunTypeEnum.chain:AgentExecutor > 8:RunTypeEnum.chain:LLMChain] [2.69s] Exiting Chain run with output:
{
"text": "Christopher Nolan was born on July 30, 1970, which makes him 52 years old in 2023. Now I need to calculate his age in days.\nAction: Calculator\nAction Input: 52*365"
}
[tool/start] [1:RunTypeEnum.chain:AgentExecutor > 10:RunTypeEnum.tool:Calculator] Entering Tool run with input:
"52*365"
[chain/start] [1:RunTypeEnum.chain:AgentExecutor > 10:RunTypeEnum.tool:Calculator > 11:RunTypeEnum.chain:LLMMathChain] Entering Chain run with input:
{
"question": "52*365"
}
[chain/start] [1:RunTypeEnum.chain:AgentExecutor > 10:RunTypeEnum.tool:Calculator > 11:RunTypeEnum.chain:LLMMathChain > 12:RunTypeEnum.chain:LLMChain] Entering Chain run with input:
{
"question": "52*365",
"stop": [
"```output"
]
}
[llm/start] [1:RunTypeEnum.chain:AgentExecutor > 10:RunTypeEnum.tool:Calculator > 11:RunTypeEnum.chain:LLMMathChain > 12:RunTypeEnum.chain:LLMChain > 13:RunTypeEnum.llm:ChatOpenAI] Entering LLM run with input:
{
"prompts": [
"Human: Translate a math problem into a expression that can be executed using Python's numexpr library. Use the output of running this code to answer the question.\n\nQuestion: ${Question with math problem.}\n```text\n${single line mathematical expression that solves the problem}\n```\n...numexpr.evaluate(text)...\n```output\n${Output of running the code}\n```\nAnswer: ${Answer}\n\nBegin.\n\nQuestion: What is 37593 * 67?\n```text\n37593 * 67\n```\n...numexpr.evaluate(\"37593 * 67\")...\n```output\n2518731\n```\nAnswer: 2518731\n\nQuestion: 37593^(1/5)\n```text\n37593**(1/5)\n```\n...numexpr.evaluate(\"37593**(1/5)\")...\n```output\n8.222831614237718\n```\nAnswer: 8.222831614237718\n\nQuestion: 52*365"
]
}
[llm/end] [1:RunTypeEnum.chain:AgentExecutor > 10:RunTypeEnum.tool:Calculator > 11:RunTypeEnum.chain:LLMMathChain > 12:RunTypeEnum.chain:LLMChain > 13:RunTypeEnum.llm:ChatOpenAI] [2.89s] Exiting LLM run with output:
{
"generations": [
[
{
"text": "```text\n52*365\n```\n...numexpr.evaluate(\"52*365\")...\n",
"generation_info": {
"finish_reason": "stop"
},
"message": {
"lc": 1,
"type": "constructor",
"id": [
"langchain",
"schema",
"messages",
"AIMessage"
],
"kwargs": {
"content": "```text\n52*365\n```\n...numexpr.evaluate(\"52*365\")...\n",
"additional_kwargs": {}
}
}
}
]
],
"llm_output": {
"token_usage": {
"prompt_tokens": 203,
"completion_tokens": 19,
"total_tokens": 222
},
"model_name": "gpt-4"
},
"run": null
}
[chain/end] [1:RunTypeEnum.chain:AgentExecutor > 10:RunTypeEnum.tool:Calculator > 11:RunTypeEnum.chain:LLMMathChain > 12:RunTypeEnum.chain:LLMChain] [2.89s] Exiting Chain run with output:
{
"text": "```text\n52*365\n```\n...numexpr.evaluate(\"52*365\")...\n"
}
[chain/end] [1:RunTypeEnum.chain:AgentExecutor > 10:RunTypeEnum.tool:Calculator > 11:RunTypeEnum.chain:LLMMathChain] [2.90s] Exiting Chain run with output:
{
"answer": "Answer: 18980"
}
[tool/end] [1:RunTypeEnum.chain:AgentExecutor > 10:RunTypeEnum.tool:Calculator] [2.90s] Exiting Tool run with output:
"Answer: 18980"
[chain/start] [1:RunTypeEnum.chain:AgentExecutor > 14:RunTypeEnum.chain:LLMChain] Entering Chain run with input:
{
"input": "Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?",
"agent_scratchpad": "I need to find out who directed the 2023 film Oppenheimer and their age. Then, I need to calculate their age in days. I will use DuckDuckGo to find out the director and their age.\nAction: duckduckgo_search\nAction Input: \"Director of the 2023 film Oppenheimer and their age\"\nObservation: Capturing the mad scramble to build the first atomic bomb required rapid-fire filming, strict set rules and the construction of an entire 1940s western town. By Jada Yuan. July 19, 2023 at 5:00 a ... In Christopher Nolan's new film, \"Oppenheimer,\" Cillian Murphy stars as J. Robert Oppenheimer, the American physicist who oversaw the Manhattan Project in Los Alamos, N.M. Universal Pictures... Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. Christopher Nolan goes deep on 'Oppenheimer,' his most 'extreme' film to date. By Kenneth Turan. July 11, 2023 5 AM PT. For Subscribers. Christopher Nolan is photographed in Los Angeles ... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.\nThought:The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his age.\nAction: duckduckgo_search\nAction Input: \"Christopher Nolan age\"\nObservation: Christopher Edward Nolan CBE (born 30 July 1970) is a British and American filmmaker. Known for his Hollywood blockbusters with complex storytelling, Nolan is considered a leading filmmaker of the 21st century. His films have grossed $5 billion worldwide. The recipient of many accolades, he has been nominated for five Academy Awards, five BAFTA Awards and six Golden Globe Awards. July 30, 1970 (age 52) London England Notable Works: \"Dunkirk\" \"Tenet\" \"The Prestige\" See all related content → Recent News Jul. 13, 2023, 11:11 AM ET (AP) Cillian Murphy, playing Oppenheimer, finally gets to lead a Christopher Nolan film July 11, 2023 5 AM PT For Subscribers Christopher Nolan is photographed in Los Angeles. (Joe Pugliese / For The Times) This is not the story I was supposed to write. Oppenheimer director Christopher Nolan, Cillian Murphy, Emily Blunt and Matt Damon on the stakes of making a three-hour, CGI-free summer film. Christopher Nolan, the director behind such films as \"Dunkirk,\" \"Inception,\" \"Interstellar,\" and the \"Dark Knight\" trilogy, has spent the last three years living in Oppenheimer's world, writing ...\nThought:Christopher Nolan was born on July 30, 1970, which makes him 52 years old in 2023. Now I need to calculate his age in days.\nAction: Calculator\nAction Input: 52*365\nObservation: Answer: 18980\nThought:",
"stop": [
"\nObservation:",
"\n\tObservation:"
]
}
[llm/start] [1:RunTypeEnum.chain:AgentExecutor > 14:RunTypeEnum.chain:LLMChain > 15:RunTypeEnum.llm:ChatOpenAI] Entering LLM run with input:
{
"prompts": [
"Human: Answer the following questions as best you can. You have access to the following tools:\n\nduckduckgo_search: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.\nCalculator: Useful for when you need to answer questions about math.\n\nUse the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [duckduckgo_search, Calculator]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n\nBegin!\n\nQuestion: Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?\nThought:I need to find out who directed the 2023 film Oppenheimer and their age. Then, I need to calculate their age in days. I will use DuckDuckGo to find out the director and their age.\nAction: duckduckgo_search\nAction Input: \"Director of the 2023 film Oppenheimer and their age\"\nObservation: Capturing the mad scramble to build the first atomic bomb required rapid-fire filming, strict set rules and the construction of an entire 1940s western town. By Jada Yuan. July 19, 2023 at 5:00 a ... In Christopher Nolan's new film, \"Oppenheimer,\" Cillian Murphy stars as J. Robert Oppenheimer, the American physicist who oversaw the Manhattan Project in Los Alamos, N.M. Universal Pictures... Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. Christopher Nolan goes deep on 'Oppenheimer,' his most 'extreme' film to date. By Kenneth Turan. July 11, 2023 5 AM PT. For Subscribers. Christopher Nolan is photographed in Los Angeles ... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.\nThought:The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his age.\nAction: duckduckgo_search\nAction Input: \"Christopher Nolan age\"\nObservation: Christopher Edward Nolan CBE (born 30 July 1970) is a British and American filmmaker. Known for his Hollywood blockbusters with complex storytelling, Nolan is considered a leading filmmaker of the 21st century. His films have grossed $5 billion worldwide. The recipient of many accolades, he has been nominated for five Academy Awards, five BAFTA Awards and six Golden Globe Awards. July 30, 1970 (age 52) London England Notable Works: \"Dunkirk\" \"Tenet\" \"The Prestige\" See all related content → Recent News Jul. 13, 2023, 11:11 AM ET (AP) Cillian Murphy, playing Oppenheimer, finally gets to lead a Christopher Nolan film July 11, 2023 5 AM PT For Subscribers Christopher Nolan is photographed in Los Angeles. (Joe Pugliese / For The Times) This is not the story I was supposed to write. Oppenheimer director Christopher Nolan, Cillian Murphy, Emily Blunt and Matt Damon on the stakes of making a three-hour, CGI-free summer film. Christopher Nolan, the director behind such films as \"Dunkirk,\" \"Inception,\" \"Interstellar,\" and the \"Dark Knight\" trilogy, has spent the last three years living in Oppenheimer's world, writing ...\nThought:Christopher Nolan was born on July 30, 1970, which makes him 52 years old in 2023. Now I need to calculate his age in days.\nAction: Calculator\nAction Input: 52*365\nObservation: Answer: 18980\nThought:"
]
}
[llm/end] [1:RunTypeEnum.chain:AgentExecutor > 14:RunTypeEnum.chain:LLMChain > 15:RunTypeEnum.llm:ChatOpenAI] [3.52s] Exiting LLM run with output:
{
"generations": [
[
{
"text": "I now know the final answer\nFinal Answer: The director of the 2023 film Oppenheimer is Christopher Nolan and he is 52 years old. His age in days is approximately 18980 days.",
"generation_info": {
"finish_reason": "stop"
},
"message": {
"lc": 1,
"type": "constructor",
"id": [
"langchain",
"schema",
"messages",
"AIMessage"
],
"kwargs": {
"content": "I now know the final answer\nFinal Answer: The director of the 2023 film Oppenheimer is Christopher Nolan and he is 52 years old. His age in days is approximately 18980 days.",
"additional_kwargs": {}
}
}
}
]
],
"llm_output": {
"token_usage": {
"prompt_tokens": 926,
"completion_tokens": 43,
"total_tokens": 969
},
"model_name": "gpt-4"
},
"run": null
}
[chain/end] [1:RunTypeEnum.chain:AgentExecutor > 14:RunTypeEnum.chain:LLMChain] [3.52s] Exiting Chain run with output:
{
"text": "I now know the final answer\nFinal Answer: The director of the 2023 film Oppenheimer is Christopher Nolan and he is 52 years old. His age in days is approximately 18980 days."
}
[chain/end] [1:RunTypeEnum.chain:AgentExecutor] [21.96s] Exiting Chain run with output:
{
"output": "The director of the 2023 film Oppenheimer is Christopher Nolan and he is 52 years old. His age in days is approximately 18980 days."
}
'The director of the 2023 film Oppenheimer is Christopher Nolan and he is 52 years old. His age in days is approximately 18980 days.'
```
</CodeOutputBlock>
</details>
### `set_verbose(True)`
Setting the `verbose` flag will print out inputs and outputs in a slightly more readable format and will skip logging certain raw outputs (like the token usage stats for an LLM call) so that you can focus on application logic.
```python
from langchain.globals import set_verbose
set_verbose(True)
agent.run("Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?")
```
<details> <summary>Console output</summary>
<CodeOutputBlock lang="python">
```
> Entering new AgentExecutor chain...
> Entering new LLMChain chain...
Prompt after formatting:
Answer the following questions as best you can. You have access to the following tools:
duckduckgo_search: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.
Calculator: Useful for when you need to answer questions about math.
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [duckduckgo_search, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!
Question: Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?
Thought:
> Finished chain.
First, I need to find out who directed the film Oppenheimer in 2023 and their birth date to calculate their age.
Action: duckduckgo_search
Action Input: "Director of the 2023 film Oppenheimer"
Observation: Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. In Christopher Nolan's new film, "Oppenheimer," Cillian Murphy stars as J. Robert ... 2023, 12:16 p.m. ET. ... including his role as the director of the Manhattan Engineer District, better ... J Robert Oppenheimer was the director of the secret Los Alamos Laboratory. It was established under US president Franklin D Roosevelt as part of the Manhattan Project to build the first atomic bomb. He oversaw the first atomic bomb detonation in the New Mexico desert in July 1945, code-named "Trinity". In this opening salvo of 2023's Oscar battle, Nolan has enjoined a star-studded cast for a retelling of the brilliant and haunted life of J. Robert Oppenheimer, the American physicist whose... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.
Thought:
> Entering new LLMChain chain...
Prompt after formatting:
Answer the following questions as best you can. You have access to the following tools:
duckduckgo_search: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.
Calculator: Useful for when you need to answer questions about math.
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [duckduckgo_search, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!
Question: Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?
Thought:First, I need to find out who directed the film Oppenheimer in 2023 and their birth date to calculate their age.
Action: duckduckgo_search
Action Input: "Director of the 2023 film Oppenheimer"
Observation: Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. In Christopher Nolan's new film, "Oppenheimer," Cillian Murphy stars as J. Robert ... 2023, 12:16 p.m. ET. ... including his role as the director of the Manhattan Engineer District, better ... J Robert Oppenheimer was the director of the secret Los Alamos Laboratory. It was established under US president Franklin D Roosevelt as part of the Manhattan Project to build the first atomic bomb. He oversaw the first atomic bomb detonation in the New Mexico desert in July 1945, code-named "Trinity". In this opening salvo of 2023's Oscar battle, Nolan has enjoined a star-studded cast for a retelling of the brilliant and haunted life of J. Robert Oppenheimer, the American physicist whose... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.
Thought:
> Finished chain.
The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his birth date to calculate his age.
Action: duckduckgo_search
Action Input: "Christopher Nolan birth date"
Observation: July 30, 1970 (age 52) London England Notable Works: "Dunkirk" "Tenet" "The Prestige" See all related content → Recent News Jul. 13, 2023, 11:11 AM ET (AP) Cillian Murphy, playing Oppenheimer, finally gets to lead a Christopher Nolan film Christopher Edward Nolan CBE (born 30 July 1970) is a British and American filmmaker. Known for his Hollywood blockbusters with complex storytelling, Nolan is considered a leading filmmaker of the 21st century. His films have grossed $5 billion worldwide. The recipient of many accolades, he has been nominated for five Academy Awards, five BAFTA Awards and six Golden Globe Awards. Christopher Nolan is currently 52 according to his birthdate July 30, 1970 Sun Sign Leo Born Place Westminster, London, England, United Kingdom Residence Los Angeles, California, United States Nationality Education Chris attended Haileybury and Imperial Service College, in Hertford Heath, Hertfordshire. Christopher Nolan's next movie will study the man who developed the atomic bomb, J. Robert Oppenheimer. Here's the release date, plot, trailers & more. July 2023 sees the release of Christopher Nolan's new film, Oppenheimer, his first movie since 2020's Tenet and his split from Warner Bros. Billed as an epic thriller about "the man who ...
Thought:
> Entering new LLMChain chain...
Prompt after formatting:
Answer the following questions as best you can. You have access to the following tools:
duckduckgo_search: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.
Calculator: Useful for when you need to answer questions about math.
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [duckduckgo_search, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!
Question: Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?
Thought:First, I need to find out who directed the film Oppenheimer in 2023 and their birth date to calculate their age.
Action: duckduckgo_search
Action Input: "Director of the 2023 film Oppenheimer"
Observation: Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. In Christopher Nolan's new film, "Oppenheimer," Cillian Murphy stars as J. Robert ... 2023, 12:16 p.m. ET. ... including his role as the director of the Manhattan Engineer District, better ... J Robert Oppenheimer was the director of the secret Los Alamos Laboratory. It was established under US president Franklin D Roosevelt as part of the Manhattan Project to build the first atomic bomb. He oversaw the first atomic bomb detonation in the New Mexico desert in July 1945, code-named "Trinity". In this opening salvo of 2023's Oscar battle, Nolan has enjoined a star-studded cast for a retelling of the brilliant and haunted life of J. Robert Oppenheimer, the American physicist whose... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.
Thought:The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his birth date to calculate his age.
Action: duckduckgo_search
Action Input: "Christopher Nolan birth date"
Observation: July 30, 1970 (age 52) London England Notable Works: "Dunkirk" "Tenet" "The Prestige" See all related content → Recent News Jul. 13, 2023, 11:11 AM ET (AP) Cillian Murphy, playing Oppenheimer, finally gets to lead a Christopher Nolan film Christopher Edward Nolan CBE (born 30 July 1970) is a British and American filmmaker. Known for his Hollywood blockbusters with complex storytelling, Nolan is considered a leading filmmaker of the 21st century. His films have grossed $5 billion worldwide. The recipient of many accolades, he has been nominated for five Academy Awards, five BAFTA Awards and six Golden Globe Awards. Christopher Nolan is currently 52 according to his birthdate July 30, 1970 Sun Sign Leo Born Place Westminster, London, England, United Kingdom Residence Los Angeles, California, United States Nationality Education Chris attended Haileybury and Imperial Service College, in Hertford Heath, Hertfordshire. Christopher Nolan's next movie will study the man who developed the atomic bomb, J. Robert Oppenheimer. Here's the release date, plot, trailers & more. July 2023 sees the release of Christopher Nolan's new film, Oppenheimer, his first movie since 2020's Tenet and his split from Warner Bros. Billed as an epic thriller about "the man who ...
Thought:
> Finished chain.
Christopher Nolan was born on July 30, 1970. Now I need to calculate his age in 2023 and then convert it into days.
Action: Calculator
Action Input: (2023 - 1970) * 365
> Entering new LLMMathChain chain...
(2023 - 1970) * 365
> Entering new LLMChain chain...
Prompt after formatting:
Translate a math problem into a expression that can be executed using Python's numexpr library. Use the output of running this code to answer the question.
Question: ${Question with math problem.}
```text
${single line mathematical expression that solves the problem}
```
...numexpr.evaluate(text)...
```output
${Output of running the code}
```
Answer: ${Answer}
Begin.
Question: What is 37593 * 67?
```text
37593 * 67
```
...numexpr.evaluate("37593 * 67")...
```output
2518731
```
Answer: 2518731
Question: 37593^(1/5)
```text
37593**(1/5)
```
...numexpr.evaluate("37593**(1/5)")...
```output
8.222831614237718
```
Answer: 8.222831614237718
Question: (2023 - 1970) * 365
> Finished chain.
```text
(2023 - 1970) * 365
```
...numexpr.evaluate("(2023 - 1970) * 365")...
Answer: 19345
> Finished chain.
Observation: Answer: 19345
Thought:
> Entering new LLMChain chain...
Prompt after formatting:
Answer the following questions as best you can. You have access to the following tools:
duckduckgo_search: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.
Calculator: Useful for when you need to answer questions about math.
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [duckduckgo_search, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!
Question: Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?
Thought:First, I need to find out who directed the film Oppenheimer in 2023 and their birth date to calculate their age.
Action: duckduckgo_search
Action Input: "Director of the 2023 film Oppenheimer"
Observation: Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. In Christopher Nolan's new film, "Oppenheimer," Cillian Murphy stars as J. Robert ... 2023, 12:16 p.m. ET. ... including his role as the director of the Manhattan Engineer District, better ... J Robert Oppenheimer was the director of the secret Los Alamos Laboratory. It was established under US president Franklin D Roosevelt as part of the Manhattan Project to build the first atomic bomb. He oversaw the first atomic bomb detonation in the New Mexico desert in July 1945, code-named "Trinity". In this opening salvo of 2023's Oscar battle, Nolan has enjoined a star-studded cast for a retelling of the brilliant and haunted life of J. Robert Oppenheimer, the American physicist whose... Oppenheimer is a 2023 epic biographical thriller film written and directed by Christopher Nolan.It is based on the 2005 biography American Prometheus by Kai Bird and Martin J. Sherwin about J. Robert Oppenheimer, a theoretical physicist who was pivotal in developing the first nuclear weapons as part of the Manhattan Project and thereby ushering in the Atomic Age.
Thought:The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his birth date to calculate his age.
Action: duckduckgo_search
Action Input: "Christopher Nolan birth date"
Observation: July 30, 1970 (age 52) London England Notable Works: "Dunkirk" "Tenet" "The Prestige" See all related content → Recent News Jul. 13, 2023, 11:11 AM ET (AP) Cillian Murphy, playing Oppenheimer, finally gets to lead a Christopher Nolan film Christopher Edward Nolan CBE (born 30 July 1970) is a British and American filmmaker. Known for his Hollywood blockbusters with complex storytelling, Nolan is considered a leading filmmaker of the 21st century. His films have grossed $5 billion worldwide. The recipient of many accolades, he has been nominated for five Academy Awards, five BAFTA Awards and six Golden Globe Awards. Christopher Nolan is currently 52 according to his birthdate July 30, 1970 Sun Sign Leo Born Place Westminster, London, England, United Kingdom Residence Los Angeles, California, United States Nationality Education Chris attended Haileybury and Imperial Service College, in Hertford Heath, Hertfordshire. Christopher Nolan's next movie will study the man who developed the atomic bomb, J. Robert Oppenheimer. Here's the release date, plot, trailers & more. July 2023 sees the release of Christopher Nolan's new film, Oppenheimer, his first movie since 2020's Tenet and his split from Warner Bros. Billed as an epic thriller about "the man who ...
Thought:Christopher Nolan was born on July 30, 1970. Now I need to calculate his age in 2023 and then convert it into days.
Action: Calculator
Action Input: (2023 - 1970) * 365
Observation: Answer: 19345
Thought:
> Finished chain.
I now know the final answer
Final Answer: The director of the 2023 film Oppenheimer is Christopher Nolan and he is 53 years old in 2023. His age in days is 19345 days.
> Finished chain.
'The director of the 2023 film Oppenheimer is Christopher Nolan and he is 53 years old in 2023. His age in days is 19345 days.'
```
</CodeOutputBlock>
</details>
### `Chain(..., verbose=True)`
You can also scope verbosity down to a single object, in which case only the inputs and outputs to that object are printed (along with any additional callbacks calls made specifically by that object).
```python
# Passing verbose=True to initialize_agent will pass that along to the AgentExecutor (which is a Chain).
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
)
agent.run("Who directed the 2023 film Oppenheimer and what is their age? What is their age in days (assume 365 days per year)?")
```
<details> <summary>Console output</summary>
<CodeOutputBlock lang="python">
```
> Entering new AgentExecutor chain...
First, I need to find out who directed the film Oppenheimer in 2023 and their birth date. Then, I can calculate their age in years and days.
Action: duckduckgo_search
Action Input: "Director of 2023 film Oppenheimer"
Observation: Oppenheimer: Directed by Christopher Nolan. With Cillian Murphy, Emily Blunt, Robert Downey Jr., Alden Ehrenreich. The story of American scientist J. Robert Oppenheimer and his role in the development of the atomic bomb. In Christopher Nolan's new film, "Oppenheimer," Cillian Murphy stars as J. Robert Oppenheimer, the American physicist who oversaw the Manhattan Project in Los Alamos, N.M. Universal Pictures... J Robert Oppenheimer was the director of the secret Los Alamos Laboratory. It was established under US president Franklin D Roosevelt as part of the Manhattan Project to build the first atomic bomb. He oversaw the first atomic bomb detonation in the New Mexico desert in July 1945, code-named "Trinity". A Review of Christopher Nolan's new film 'Oppenheimer' , the story of the man who fathered the Atomic Bomb. Cillian Murphy leads an all star cast ... Release Date: July 21, 2023. Director ... For his new film, "Oppenheimer," starring Cillian Murphy and Emily Blunt, director Christopher Nolan set out to build an entire 1940s western town.
Thought:The director of the 2023 film Oppenheimer is Christopher Nolan. Now I need to find out his birth date to calculate his age.
Action: duckduckgo_search
Action Input: "Christopher Nolan birth date"
Observation: July 30, 1970 (age 52) London England Notable Works: "Dunkirk" "Tenet" "The Prestige" See all related content → Recent News Jul. 13, 2023, 11:11 AM ET (AP) Cillian Murphy, playing Oppenheimer, finally gets to lead a Christopher Nolan film Christopher Edward Nolan CBE (born 30 July 1970) is a British and American filmmaker. Known for his Hollywood blockbusters with complex storytelling, Nolan is considered a leading filmmaker of the 21st century. His films have grossed $5 billion worldwide. The recipient of many accolades, he has been nominated for five Academy Awards, five BAFTA Awards and six Golden Globe Awards. Christopher Nolan is currently 52 according to his birthdate July 30, 1970 Sun Sign Leo Born Place Westminster, London, England, United Kingdom Residence Los Angeles, California, United States Nationality Education Chris attended Haileybury and Imperial Service College, in Hertford Heath, Hertfordshire. Christopher Nolan's next movie will study the man who developed the atomic bomb, J. Robert Oppenheimer. Here's the release date, plot, trailers & more. Date of Birth: 30 July 1970 . ... Christopher Nolan is a British-American film director, producer, and screenwriter. His films have grossed more than US$5 billion worldwide, and have garnered 11 Academy Awards from 36 nominations. ...
Thought:Christopher Nolan was born on July 30, 1970. Now I can calculate his age in years and then in days.
Action: Calculator
Action Input: {"operation": "subtract", "operands": [2023, 1970]}
Observation: Answer: 53
Thought:Christopher Nolan is 53 years old in 2023. Now I need to calculate his age in days.
Action: Calculator
Action Input: {"operation": "multiply", "operands": [53, 365]}
Observation: Answer: 19345
Thought:I now know the final answer
Final Answer: The director of the 2023 film Oppenheimer is Christopher Nolan. He is 53 years old in 2023, which is approximately 19345 days.
> Finished chain.
'The director of the 2023 film Oppenheimer is Christopher Nolan. He is 53 years old in 2023, which is approximately 19345 days.'
```
</CodeOutputBlock>
</details>
## Other callbacks
`Callbacks` are what we use to execute any functionality within a component outside the primary component logic. All of the above solutions use `Callbacks` under the hood to log intermediate steps of components. There are a number of `Callbacks` relevant for debugging that come with LangChain out of the box, like the [FileCallbackHandler](/docs/modules/callbacks/filecallbackhandler). You can also implement your own callbacks to execute custom functionality.
See here for more info on [Callbacks](/docs/modules/callbacks/), how to use them, and customize them.

@ -1,13 +0,0 @@
---
hide_table_of_contents: true
---
# Extending LangChain
Extending LangChain's base abstractions, whether you're planning to contribute back to the open-source repo or build a bespoke internal integration, is encouraged.
Check out these guides for building your own custom classes for the following modules:
- [Chat models](/docs/modules/model_io/chat/custom_chat_model) for interfacing with chat-tuned language models.
- [LLMs](/docs/modules/model_io/llms/custom_llm) for interfacing with text language models.
- [Output parsers](/docs/modules/model_io/output_parsers/custom) for handling language model outputs.

@ -1,13 +0,0 @@
---
sidebar_position: 1
sidebar_class_name: hidden
---
# Development
This section contains guides with general information around building apps with LangChain.
import DocCardList from "@theme/DocCardList";
import { useCurrentSidebarCategory } from '@docusaurus/theme-common';
<DocCardList items={useCurrentSidebarCategory().items.filter((item) => item.href !== "/docs/guides/development/")} />

@ -1,105 +0,0 @@
# Pydantic compatibility
- Pydantic v2 was released in June, 2023 (https://docs.pydantic.dev/2.0/blog/pydantic-v2-final/)
- v2 contains has a number of breaking changes (https://docs.pydantic.dev/2.0/migration/)
- Pydantic v2 and v1 are under the same package name, so both versions cannot be installed at the same time
## LangChain Pydantic migration plan
As of `langchain>=0.0.267`, LangChain will allow users to install either Pydantic V1 or V2.
* Internally LangChain will continue to [use V1](https://docs.pydantic.dev/latest/migration/#continue-using-pydantic-v1-features).
* During this time, users can pin their pydantic version to v1 to avoid breaking changes, or start a partial
migration using pydantic v2 throughout their code, but avoiding mixing v1 and v2 code for LangChain (see below).
User can either pin to pydantic v1, and upgrade their code in one go once LangChain has migrated to v2 internally, or they can start a partial migration to v2, but must avoid mixing v1 and v2 code for LangChain.
Below are two examples of showing how to avoid mixing pydantic v1 and v2 code in
the case of inheritance and in the case of passing objects to LangChain.
**Example 1: Extending via inheritance**
**YES**
```python
from pydantic.v1 import root_validator, validator
class CustomTool(BaseTool): # BaseTool is v1 code
x: int = Field(default=1)
def _run(*args, **kwargs):
return "hello"
@validator('x') # v1 code
@classmethod
def validate_x(cls, x: int) -> int:
return 1
CustomTool(
name='custom_tool',
description="hello",
x=1,
)
```
Mixing Pydantic v2 primitives with Pydantic v1 primitives can raise cryptic errors
**NO**
```python
from pydantic import Field, field_validator # pydantic v2
class CustomTool(BaseTool): # BaseTool is v1 code
x: int = Field(default=1)
def _run(*args, **kwargs):
return "hello"
@field_validator('x') # v2 code
@classmethod
def validate_x(cls, x: int) -> int:
return 1
CustomTool(
name='custom_tool',
description="hello",
x=1,
)
```
**Example 2: Passing objects to LangChain**
**YES**
```python
from langchain_core.tools import Tool
from pydantic.v1 import BaseModel, Field # <-- Uses v1 namespace
class CalculatorInput(BaseModel):
question: str = Field()
Tool.from_function( # <-- tool uses v1 namespace
func=lambda question: 'hello',
name="Calculator",
description="useful for when you need to answer questions about math",
args_schema=CalculatorInput
)
```
**NO**
```python
from langchain_core.tools import Tool
from pydantic import BaseModel, Field # <-- Uses v2 namespace
class CalculatorInput(BaseModel):
question: str = Field()
Tool.from_function( # <-- tool uses v1 namespace
func=lambda question: 'hello',
name="Calculator",
description="useful for when you need to answer questions about math",
args_schema=CalculatorInput
)
```

@ -1,3 +0,0 @@
# Guides
This section contains deeper dives into the LangChain framework and how to apply it.

@ -1,115 +0,0 @@
# Deployment
In today's fast-paced technological landscape, the use of Large Language Models (LLMs) is rapidly expanding. As a result, it is crucial for developers to understand how to effectively deploy these models in production environments. LLM interfaces typically fall into two categories:
- **Case 1: Utilizing External LLM Providers (OpenAI, Anthropic, etc.)**
In this scenario, most of the computational burden is handled by the LLM providers, while LangChain simplifies the implementation of business logic around these services. This approach includes features such as prompt templating, chat message generation, caching, vector embedding database creation, preprocessing, etc.
- **Case 2: Self-hosted Open-Source Models**
Alternatively, developers can opt to use smaller, yet comparably capable, self-hosted open-source LLM models. This approach can significantly decrease costs, latency, and privacy concerns associated with transferring data to external LLM providers.
Regardless of the framework that forms the backbone of your product, deploying LLM applications comes with its own set of challenges. It's vital to understand the trade-offs and key considerations when evaluating serving frameworks.
## Outline
This guide aims to provide a comprehensive overview of the requirements for deploying LLMs in a production setting, focusing on:
- **Designing a Robust LLM Application Service**
- **Maintaining Cost-Efficiency**
- **Ensuring Rapid Iteration**
Understanding these components is crucial when assessing serving systems. LangChain integrates with several open-source projects designed to tackle these issues, providing a robust framework for productionizing your LLM applications. Some notable frameworks include:
- [Ray Serve](/docs/integrations/providers/ray_serve)
- [BentoML](https://github.com/bentoml/BentoML)
- [OpenLLM](/docs/integrations/providers/openllm)
- [Modal](/docs/integrations/providers/modal)
- [Jina](/docs/integrations/providers/jina)
These links will provide further information on each ecosystem, assisting you in finding the best fit for your LLM deployment needs.
## Designing a Robust LLM Application Service
When deploying an LLM service in production, it's imperative to provide a seamless user experience free from outages. Achieving 24/7 service availability involves creating and maintaining several sub-systems surrounding your application.
### Monitoring
Monitoring forms an integral part of any system running in a production environment. In the context of LLMs, it is essential to monitor both performance and quality metrics.
**Performance Metrics:** These metrics provide insights into the efficiency and capacity of your model. Here are some key examples:
- Query per second (QPS): This measures the number of queries your model processes in a second, offering insights into its utilization.
- Latency: This metric quantifies the delay from when your client sends a request to when they receive a response.
- Tokens Per Second (TPS): This represents the number of tokens your model can generate in a second.
**Quality Metrics:** These metrics are typically customized according to the business use-case. For instance, how does the output of your system compare to a baseline, such as a previous version? Although these metrics can be calculated offline, you need to log the necessary data to use them later.
### Fault tolerance
Your application may encounter errors such as exceptions in your model inference or business logic code, causing failures and disrupting traffic. Other potential issues could arise from the machine running your application, such as unexpected hardware breakdowns or loss of spot-instances during high-demand periods. One way to mitigate these risks is by increasing redundancy through replica scaling and implementing recovery mechanisms for failed replicas. However, model replicas aren't the only potential points of failure. It's essential to build resilience against various failures that could occur at any point in your stack.
### Zero down time upgrade
System upgrades are often necessary but can result in service disruptions if not handled correctly. One way to prevent downtime during upgrades is by implementing a smooth transition process from the old version to the new one. Ideally, the new version of your LLM service is deployed, and traffic gradually shifts from the old to the new version, maintaining a constant QPS throughout the process.
### Load balancing
Load balancing, in simple terms, is a technique to distribute work evenly across multiple computers, servers, or other resources to optimize the utilization of the system, maximize throughput, minimize response time, and avoid overload of any single resource. Think of it as a traffic officer directing cars (requests) to different roads (servers) so that no single road becomes too congested.
There are several strategies for load balancing. For example, one common method is the *Round Robin* strategy, where each request is sent to the next server in line, cycling back to the first when all servers have received a request. This works well when all servers are equally capable. However, if some servers are more powerful than others, you might use a *Weighted Round Robin* or *Least Connections* strategy, where more requests are sent to the more powerful servers, or to those currently handling the fewest active requests. Let's imagine you're running a LLM chain. If your application becomes popular, you could have hundreds or even thousands of users asking questions at the same time. If one server gets too busy (high load), the load balancer would direct new requests to another server that is less busy. This way, all your users get a timely response and the system remains stable.
## Maintaining Cost-Efficiency and Scalability
Deploying LLM services can be costly, especially when you're handling a large volume of user interactions. Charges by LLM providers are usually based on tokens used, making a chat system inference on these models potentially expensive. However, several strategies can help manage these costs without compromising the quality of the service.
### Self-hosting models
Several smaller and open-source LLMs are emerging to tackle the issue of reliance on LLM providers. Self-hosting allows you to maintain similar quality to LLM provider models while managing costs. The challenge lies in building a reliable, high-performing LLM serving system on your own machines.
### Resource Management and Auto-Scaling
Computational logic within your application requires precise resource allocation. For instance, if part of your traffic is served by an OpenAI endpoint and another part by a self-hosted model, it's crucial to allocate suitable resources for each. Auto-scaling—adjusting resource allocation based on traffic—can significantly impact the cost of running your application. This strategy requires a balance between cost and responsiveness, ensuring neither resource over-provisioning nor compromised application responsiveness.
### Utilizing Spot Instances
On platforms like AWS, spot instances offer substantial cost savings, typically priced at about a third of on-demand instances. The trade-off is a higher crash rate, necessitating a robust fault-tolerance mechanism for effective use.
### Independent Scaling
When self-hosting your models, you should consider independent scaling. For example, if you have two translation models, one fine-tuned for French and another for Spanish, incoming requests might necessitate different scaling requirements for each.
### Batching requests
In the context of Large Language Models, batching requests can enhance efficiency by better utilizing your GPU resources. GPUs are inherently parallel processors, designed to handle multiple tasks simultaneously. If you send individual requests to the model, the GPU might not be fully utilized as it's only working on a single task at a time. On the other hand, by batching requests together, you're allowing the GPU to work on multiple tasks at once, maximizing its utilization and improving inference speed. This not only leads to cost savings but can also improve the overall latency of your LLM service.
In summary, managing costs while scaling your LLM services requires a strategic approach. Utilizing self-hosting models, managing resources effectively, employing auto-scaling, using spot instances, independently scaling models, and batching requests are key strategies to consider. Open-source libraries such as Ray Serve and BentoML are designed to deal with these complexities.
## Ensuring Rapid Iteration
The LLM landscape is evolving at an unprecedented pace, with new libraries and model architectures being introduced constantly. Consequently, it's crucial to avoid tying yourself to a solution specific to one particular framework. This is especially relevant in serving, where changes to your infrastructure can be time-consuming, expensive, and risky. Strive for infrastructure that is not locked into any specific machine learning library or framework, but instead offers a general-purpose, scalable serving layer. Here are some aspects where flexibility plays a key role:
### Model composition
Deploying systems like LangChain demands the ability to piece together different models and connect them via logic. Take the example of building a natural language input SQL query engine. Querying an LLM and obtaining the SQL command is only part of the system. You need to extract metadata from the connected database, construct a prompt for the LLM, run the SQL query on an engine, collect and feedback the response to the LLM as the query runs, and present the results to the user. This demonstrates the need to seamlessly integrate various complex components built in Python into a dynamic chain of logical blocks that can be served together.
## Cloud providers
Many hosted solutions are restricted to a single cloud provider, which can limit your options in today's multi-cloud world. Depending on where your other infrastructure components are built, you might prefer to stick with your chosen cloud provider.
## Infrastructure as Code (IaC)
Rapid iteration also involves the ability to recreate your infrastructure quickly and reliably. This is where Infrastructure as Code (IaC) tools like Terraform, CloudFormation, or Kubernetes YAML files come into play. They allow you to define your infrastructure in code files, which can be version controlled and quickly deployed, enabling faster and more reliable iterations.
## CI/CD
In a fast-paced environment, implementing CI/CD pipelines can significantly speed up the iteration process. They help automate the testing and deployment of your LLM applications, reducing the risk of errors and enabling faster feedback and iteration.

@ -1,7 +0,0 @@
# LangChain Templates
For more information on LangChain Templates, visit
- [LangChain Templates Quickstart](https://github.com/langchain-ai/langchain/blob/master/templates/README.md)
- [LangChain Templates Index](https://github.com/langchain-ai/langchain/blob/master/templates/docs/INDEX.md)
- [Full List of Templates](https://github.com/langchain-ai/langchain/blob/master/templates/)

@ -1,293 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "5046d96f-d578-4d5b-9a7e-43b28cafe61d",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 2\n",
"title: Custom pairwise evaluator\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "657d2c8c-54b4-42a3-9f02-bdefa0ed6728",
"metadata": {},
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/comparison/custom.ipynb)\n",
"\n",
"You can make your own pairwise string evaluators by inheriting from `PairwiseStringEvaluator` class and overwriting the `_evaluate_string_pairs` method (and the `_aevaluate_string_pairs` method if you want to use the evaluator asynchronously).\n",
"\n",
"In this example, you will make a simple custom evaluator that just returns whether the first prediction has more whitespace tokenized 'words' than the second.\n",
"\n",
"You can check out the reference docs for the [PairwiseStringEvaluator interface](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.PairwiseStringEvaluator.html#langchain.evaluation.schema.PairwiseStringEvaluator) for more info.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "93f3a653-d198-4291-973c-8d1adba338b2",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from typing import Any, Optional\n",
"\n",
"from langchain.evaluation import PairwiseStringEvaluator\n",
"\n",
"\n",
"class LengthComparisonPairwiseEvaluator(PairwiseStringEvaluator):\n",
" \"\"\"\n",
" Custom evaluator to compare two strings.\n",
" \"\"\"\n",
"\n",
" def _evaluate_string_pairs(\n",
" self,\n",
" *,\n",
" prediction: str,\n",
" prediction_b: str,\n",
" reference: Optional[str] = None,\n",
" input: Optional[str] = None,\n",
" **kwargs: Any,\n",
" ) -> dict:\n",
" score = int(len(prediction.split()) > len(prediction_b.split()))\n",
" return {\"score\": score}"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7d4a77c3-07a7-4076-8e7f-f9bca0d6c290",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 1}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator = LengthComparisonPairwiseEvaluator()\n",
"\n",
"evaluator.evaluate_string_pairs(\n",
" prediction=\"The quick brown fox jumped over the lazy dog.\",\n",
" prediction_b=\"The quick brown fox jumped over the dog.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d90f128f-6f49-42a1-b05a-3aea568ee03b",
"metadata": {},
"source": [
"## LLM-Based Example\n",
"\n",
"That example was simple to illustrate the API, but it wasn't very useful in practice. Below, use an LLM with some custom instructions to form a simple preference scorer similar to the built-in [PairwiseStringEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html#langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain). We will use `ChatAnthropic` for the evaluator chain."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b4b43098-4d96-417b-a8a9-b3e75779cfe8",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet anthropic\n",
"# %env ANTHROPIC_API_KEY=YOUR_API_KEY"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b6e978ab-48f1-47ff-9506-e13b1a50be6e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from typing import Any, Optional\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.evaluation import PairwiseStringEvaluator\n",
"from langchain_community.chat_models import ChatAnthropic\n",
"\n",
"\n",
"class CustomPreferenceEvaluator(PairwiseStringEvaluator):\n",
" \"\"\"\n",
" Custom evaluator to compare two strings using a custom LLMChain.\n",
" \"\"\"\n",
"\n",
" def __init__(self) -> None:\n",
" llm = ChatAnthropic(model=\"claude-2\", temperature=0)\n",
" self.eval_chain = LLMChain.from_string(\n",
" llm,\n",
" \"\"\"Which option is preferred? Do not take order into account. Evaluate based on accuracy and helpfulness. If neither is preferred, respond with C. Provide your reasoning, then finish with Preference: A/B/C\n",
"\n",
"Input: How do I get the path of the parent directory in python 3.8?\n",
"Option A: You can use the following code:\n",
"```python\n",
"import os\n",
"\n",
"os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\n",
"```\n",
"Option B: You can use the following code:\n",
"```python\n",
"from pathlib import Path\n",
"Path(__file__).absolute().parent\n",
"```\n",
"Reasoning: Both options return the same result. However, since option B is more concise and easily understand, it is preferred.\n",
"Preference: B\n",
"\n",
"Which option is preferred? Do not take order into account. Evaluate based on accuracy and helpfulness. If neither is preferred, respond with C. Provide your reasoning, then finish with Preference: A/B/C\n",
"Input: {input}\n",
"Option A: {prediction}\n",
"Option B: {prediction_b}\n",
"Reasoning:\"\"\",\n",
" )\n",
"\n",
" @property\n",
" def requires_input(self) -> bool:\n",
" return True\n",
"\n",
" @property\n",
" def requires_reference(self) -> bool:\n",
" return False\n",
"\n",
" def _evaluate_string_pairs(\n",
" self,\n",
" *,\n",
" prediction: str,\n",
" prediction_b: str,\n",
" reference: Optional[str] = None,\n",
" input: Optional[str] = None,\n",
" **kwargs: Any,\n",
" ) -> dict:\n",
" result = self.eval_chain(\n",
" {\n",
" \"input\": input,\n",
" \"prediction\": prediction,\n",
" \"prediction_b\": prediction_b,\n",
" \"stop\": [\"Which option is preferred?\"],\n",
" },\n",
" **kwargs,\n",
" )\n",
"\n",
" response_text = result[\"text\"]\n",
" reasoning, preference = response_text.split(\"Preference:\", maxsplit=1)\n",
" preference = preference.strip()\n",
" score = 1.0 if preference == \"A\" else (0.0 if preference == \"B\" else None)\n",
" return {\"reasoning\": reasoning.strip(), \"value\": preference, \"score\": score}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "5cbd8b1d-2cb0-4f05-b435-a1a00074d94a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"evaluator = CustomPreferenceEvaluator()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2c0a7fb7-b976-4443-9f0e-e707a6dfbdf7",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'Option B is preferred over option A for importing from a relative directory, because it is more straightforward and concise.\\n\\nOption A uses the importlib module, which allows importing a module by specifying the full name as a string. While this works, it is less clear compared to option B.\\n\\nOption B directly imports from the relative path using dot notation, which clearly shows that it is a relative import. This is the recommended way to do relative imports in Python.\\n\\nIn summary, option B is more accurate and helpful as it uses the standard Python relative import syntax.',\n",
" 'value': 'B',\n",
" 'score': 0.0}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" input=\"How do I import from a relative directory?\",\n",
" prediction=\"use importlib! importlib.import_module('.my_package', '.')\",\n",
" prediction_b=\"from .sibling import foo\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "f13a1346-7dbe-451d-b3a3-99e8fc7b753b",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CustomPreferenceEvaluator requires an input string.\n"
]
}
],
"source": [
"# Setting requires_input to return True adds additional validation to avoid returning a grade when insufficient data is provided to the chain.\n",
"\n",
"try:\n",
" evaluator.evaluate_string_pairs(\n",
" prediction=\"use importlib! importlib.import_module('.my_package', '.')\",\n",
" prediction_b=\"from .sibling import foo\",\n",
" )\n",
"except ValueError as e:\n",
" print(e)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7829cc3-ebd1-4628-ae97-15166202e9cc",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -1,28 +0,0 @@
---
sidebar_position: 3
---
# Comparison Evaluators
Comparison evaluators in LangChain help measure two different chains or LLM outputs. These evaluators are helpful for comparative analyses, such as A/B testing between two language models, or comparing different versions of the same model. They can also be useful for things like generating preference scores for ai-assisted reinforcement learning.
These evaluators inherit from the `PairwiseStringEvaluator` class, providing a comparison interface for two strings - typically, the outputs from two different prompts or models, or two versions of the same model. In essence, a comparison evaluator performs an evaluation on a pair of strings and returns a dictionary containing the evaluation score and other relevant details.
To create a custom comparison evaluator, inherit from the `PairwiseStringEvaluator` class and overwrite the `_evaluate_string_pairs` method. If you require asynchronous evaluation, also overwrite the `_aevaluate_string_pairs` method.
Here's a summary of the key methods and properties of a comparison evaluator:
- `evaluate_string_pairs`: Evaluate the output string pairs. This function should be overwritten when creating custom evaluators.
- `aevaluate_string_pairs`: Asynchronously evaluate the output string pairs. This function should be overwritten for asynchronous evaluation.
- `requires_input`: This property indicates whether this evaluator requires an input string.
- `requires_reference`: This property specifies whether this evaluator requires a reference label.
:::note LangSmith Support
The [run_on_dataset](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.smith) evaluation method is designed to evaluate only a single model at a time, and thus, doesn't support these evaluators.
:::
Detailed information about creating custom evaluators and the available built-in comparison evaluators is provided in the following sections.
import DocCardList from "@theme/DocCardList";
<DocCardList />

@ -1,242 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 1\n",
"title: Pairwise embedding distance\n",
"---"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/comparison/pairwise_embedding_distance.ipynb)\n",
"\n",
"One way to measure the similarity (or dissimilarity) between two predictions on a shared or similar input is to embed the predictions and compute a vector distance between the two embeddings.<a name=\"cite_ref-1\"></a>[<sup>[1]</sup>](#cite_note-1)\n",
"\n",
"You can load the `pairwise_embedding_distance` evaluator to do this.\n",
"\n",
"**Note:** This returns a **distance** score, meaning that the lower the number, the **more** similar the outputs are, according to their embedded representation.\n",
"\n",
"Check out the reference docs for the [PairwiseEmbeddingDistanceEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain.html#langchain.evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain) for more info."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"pairwise_embedding_distance\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.0966466944859925}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" prediction=\"Seattle is hot in June\", prediction_b=\"Seattle is cool in June.\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.03761174337464557}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" prediction=\"Seattle is warm in June\", prediction_b=\"Seattle is cool in June.\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Select the Distance Metric\n",
"\n",
"By default, the evaluator uses cosine distance. You can choose a different distance metric if you'd like. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[<EmbeddingDistance.COSINE: 'cosine'>,\n",
" <EmbeddingDistance.EUCLIDEAN: 'euclidean'>,\n",
" <EmbeddingDistance.MANHATTAN: 'manhattan'>,\n",
" <EmbeddingDistance.CHEBYSHEV: 'chebyshev'>,\n",
" <EmbeddingDistance.HAMMING: 'hamming'>]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.evaluation import EmbeddingDistance\n",
"\n",
"list(EmbeddingDistance)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"evaluator = load_evaluator(\n",
" \"pairwise_embedding_distance\", distance_metric=EmbeddingDistance.EUCLIDEAN\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Select Embeddings to Use\n",
"\n",
"The constructor uses `OpenAI` embeddings by default, but you can configure this however you want. Below, use huggingface local embeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_community.embeddings import HuggingFaceEmbeddings\n",
"\n",
"embedding_model = HuggingFaceEmbeddings()\n",
"hf_evaluator = load_evaluator(\"pairwise_embedding_distance\", embeddings=embedding_model)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.5486443280477362}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hf_evaluator.evaluate_string_pairs(\n",
" prediction=\"Seattle is hot in June\", prediction_b=\"Seattle is cool in June.\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'score': 0.21018880025138598}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hf_evaluator.evaluate_string_pairs(\n",
" prediction=\"Seattle is warm in June\", prediction_b=\"Seattle is cool in June.\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a name=\"cite_note-1\"></a><i>1. Note: When it comes to semantic similarity, this often gives better results than older string distance metrics (such as those in the `PairwiseStringDistanceEvalChain`), though it tends to be less reliable than evaluators that use the LLM directly (such as the `PairwiseStringEvalChain`) </i>"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

@ -1,392 +0,0 @@
{
"cells": [
{
"cell_type": "raw",
"id": "dcfcf124-78fe-4d67-85a4-cfd3409a1ff6",
"metadata": {},
"source": [
"---\n",
"sidebar_position: 0\n",
"title: Pairwise string comparison\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "2da95378",
"metadata": {},
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/comparison/pairwise_string.ipynb)\n",
"\n",
"Often you will want to compare predictions of an LLM, Chain, or Agent for a given input. The `StringComparison` evaluators facilitate this so you can answer questions like:\n",
"\n",
"- Which LLM or prompt produces a preferred output for a given question?\n",
"- Which examples should I include for few-shot example selection?\n",
"- Which output is better to include for fine-tuning?\n",
"\n",
"The simplest and often most reliable automated way to choose a preferred prediction for a given input is to use the `pairwise_string` evaluator.\n",
"\n",
"Check out the reference docs for the [PairwiseStringEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html#langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain) for more info."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f6790c46",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"labeled_pairwise_string\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "49ad9139",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'Both responses are relevant to the question asked, as they both provide a numerical answer to the question about the number of dogs in the park. However, Response A is incorrect according to the reference answer, which states that there are four dogs. Response B, on the other hand, is correct as it matches the reference answer. Neither response demonstrates depth of thought, as they both simply provide a numerical answer without any additional information or context. \\n\\nBased on these criteria, Response B is the better response.\\n',\n",
" 'value': 'B',\n",
" 'score': 0}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" prediction=\"there are three dogs\",\n",
" prediction_b=\"4\",\n",
" input=\"how many dogs are in the park?\",\n",
" reference=\"four\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "7491d2e6-4e77-4b17-be6b-7da966785c1d",
"metadata": {},
"source": [
"## Methods\n",
"\n",
"\n",
"The pairwise string evaluator can be called using [evaluate_string_pairs](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html#langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.evaluate_string_pairs) (or async [aevaluate_string_pairs](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html#langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.aevaluate_string_pairs)) methods, which accept:\n",
"\n",
"- prediction (str) The predicted response of the first model, chain, or prompt.\n",
"- prediction_b (str) The predicted response of the second model, chain, or prompt.\n",
"- input (str) The input question, prompt, or other text.\n",
"- reference (str) (Only for the labeled_pairwise_string variant) The reference response.\n",
"\n",
"They return a dictionary with the following values:\n",
"\n",
"- value: 'A' or 'B', indicating whether `prediction` or `prediction_b` is preferred, respectively\n",
"- score: Integer 0 or 1 mapped from the 'value', where a score of 1 would mean that the first `prediction` is preferred, and a score of 0 would mean `prediction_b` is preferred.\n",
"- reasoning: String \"chain of thought reasoning\" from the LLM generated prior to creating the score"
]
},
{
"cell_type": "markdown",
"id": "ed353b93-be71-4479-b9c0-8c97814c2e58",
"metadata": {},
"source": [
"## Without References\n",
"\n",
"When references aren't available, you can still predict the preferred response.\n",
"The results will reflect the evaluation model's preference, which is less reliable and may result\n",
"in preferences that are factually incorrect."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "586320da",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"pairwise_string\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7f56c76e-a39b-4509-8b8a-8a2afe6c3da1",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'Both responses are correct and relevant to the question. However, Response B is more helpful and insightful as it provides a more detailed explanation of what addition is. Response A is correct but lacks depth as it does not explain what the operation of addition entails. \\n\\nFinal Decision: [[B]]',\n",
" 'value': 'B',\n",
" 'score': 0}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" prediction=\"Addition is a mathematical operation.\",\n",
" prediction_b=\"Addition is a mathematical operation that adds two numbers to create a third number, the 'sum'.\",\n",
" input=\"What is addition?\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "4a09b21d-9851-47e8-93d3-90044b2945b0",
"metadata": {
"tags": []
},
"source": [
"## Defining the Criteria\n",
"\n",
"By default, the LLM is instructed to select the 'preferred' response based on helpfulness, relevance, correctness, and depth of thought. You can customize the criteria by passing in a `criteria` argument, where the criteria could take any of the following forms:\n",
"\n",
"- [`Criteria`](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.Criteria.html#langchain.evaluation.criteria.eval_chain.Criteria) enum or its string value - to use one of the default criteria and their descriptions\n",
"- [Constitutional principal](https://api.python.langchain.com/en/latest/chains/langchain.chains.constitutional_ai.models.ConstitutionalPrinciple.html#langchain.chains.constitutional_ai.models.ConstitutionalPrinciple) - use one any of the constitutional principles defined in langchain\n",
"- Dictionary: a list of custom criteria, where the key is the name of the criteria, and the value is the description.\n",
"- A list of criteria or constitutional principles - to combine multiple criteria in one.\n",
"\n",
"Below is an example for determining preferred writing responses based on a custom style."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8539e7d9-f7b0-4d32-9c45-593a7915c093",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"custom_criteria = {\n",
" \"simplicity\": \"Is the language straightforward and unpretentious?\",\n",
" \"clarity\": \"Are the sentences clear and easy to understand?\",\n",
" \"precision\": \"Is the writing precise, with no unnecessary words or details?\",\n",
" \"truthfulness\": \"Does the writing feel honest and sincere?\",\n",
" \"subtext\": \"Does the writing suggest deeper meanings or themes?\",\n",
"}\n",
"evaluator = load_evaluator(\"pairwise_string\", criteria=custom_criteria)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fec7bde8-fbdc-4730-8366-9d90d033c181",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'Response A is simple, clear, and precise. It uses straightforward language to convey a deep and sincere message about families. The metaphor of joy and sorrow as music is effective and easy to understand.\\n\\nResponse B, on the other hand, is more complex and less clear. The language is more pretentious, with words like \"domicile,\" \"resounds,\" \"abode,\" \"dissonant,\" and \"elegy.\" While it conveys a similar message to Response A, it does so in a more convoluted way. The precision is also lacking due to the use of unnecessary words and details.\\n\\nBoth responses suggest deeper meanings or themes about the shared joy and unique sorrow in families. However, Response A does so in a more effective and accessible way.\\n\\nTherefore, the better response is [[A]].',\n",
" 'value': 'A',\n",
" 'score': 1}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" prediction=\"Every cheerful household shares a similar rhythm of joy; but sorrow, in each household, plays a unique, haunting melody.\",\n",
" prediction_b=\"Where one finds a symphony of joy, every domicile of happiness resounds in harmonious,\"\n",
" \" identical notes; yet, every abode of despair conducts a dissonant orchestra, each\"\n",
" \" playing an elegy of grief that is peculiar and profound to its own existence.\",\n",
" input=\"Write some prose about families.\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a25b60b2-627c-408a-be4b-a2e5cbc10726",
"metadata": {},
"source": [
"## Customize the LLM\n",
"\n",
"By default, the loader uses `gpt-4` in the evaluation chain. You can customize this when loading."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "de84a958-1330-482b-b950-68bcf23f9e35",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(temperature=0)\n",
"\n",
"evaluator = load_evaluator(\"labeled_pairwise_string\", llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "e162153f-d50a-4a7c-a033-019dabbc954c",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'Here is my assessment:\\n\\nResponse B is more helpful, insightful, and accurate than Response A. Response B simply states \"4\", which directly answers the question by providing the exact number of dogs mentioned in the reference answer. In contrast, Response A states \"there are three dogs\", which is incorrect according to the reference answer. \\n\\nIn terms of helpfulness, Response B gives the precise number while Response A provides an inaccurate guess. For relevance, both refer to dogs in the park from the question. However, Response B is more correct and factual based on the reference answer. Response A shows some attempt at reasoning but is ultimately incorrect. Response B requires less depth of thought to simply state the factual number.\\n\\nIn summary, Response B is superior in terms of helpfulness, relevance, correctness, and depth. My final decision is: [[B]]\\n',\n",
" 'value': 'B',\n",
" 'score': 0}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" prediction=\"there are three dogs\",\n",
" prediction_b=\"4\",\n",
" input=\"how many dogs are in the park?\",\n",
" reference=\"four\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e0e89c13-d0ad-4f87-8fcb-814399bafa2a",
"metadata": {},
"source": [
"## Customize the Evaluation Prompt\n",
"\n",
"You can use your own custom evaluation prompt to add more task-specific instructions or to instruct the evaluator to score the output.\n",
"\n",
"*Note: If you use a prompt that expects generates a result in a unique format, you may also have to pass in a custom output parser (`output_parser=your_parser()`) instead of the default `PairwiseStringResultOutputParser`"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "fb817efa-3a4d-439d-af8c-773b89d97ec9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"prompt_template = PromptTemplate.from_template(\n",
" \"\"\"Given the input context, which do you prefer: A or B?\n",
"Evaluate based on the following criteria:\n",
"{criteria}\n",
"Reason step by step and finally, respond with either [[A]] or [[B]] on its own line.\n",
"\n",
"DATA\n",
"----\n",
"input: {input}\n",
"reference: {reference}\n",
"A: {prediction}\n",
"B: {prediction_b}\n",
"---\n",
"Reasoning:\n",
"\n",
"\"\"\"\n",
")\n",
"evaluator = load_evaluator(\"labeled_pairwise_string\", prompt=prompt_template)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "d40aa4f0-cfd5-4cb4-83c8-8d2300a04c2f",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input_variables=['prediction', 'reference', 'prediction_b', 'input'] output_parser=None partial_variables={'criteria': 'helpfulness: Is the submission helpful, insightful, and appropriate?\\nrelevance: Is the submission referring to a real quote from the text?\\ncorrectness: Is the submission correct, accurate, and factual?\\ndepth: Does the submission demonstrate depth of thought?'} template='Given the input context, which do you prefer: A or B?\\nEvaluate based on the following criteria:\\n{criteria}\\nReason step by step and finally, respond with either [[A]] or [[B]] on its own line.\\n\\nDATA\\n----\\ninput: {input}\\nreference: {reference}\\nA: {prediction}\\nB: {prediction_b}\\n---\\nReasoning:\\n\\n' template_format='f-string' validate_template=True\n"
]
}
],
"source": [
"# The prompt was assigned to the evaluator\n",
"print(evaluator.prompt)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "9467bb42-7a31-4071-8f66-9ed2c6f06dcd",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"{'reasoning': 'Helpfulness: Both A and B are helpful as they provide a direct answer to the question.\\nRelevance: A is relevant as it refers to the correct name of the dog from the text. B is not relevant as it provides a different name.\\nCorrectness: A is correct as it accurately states the name of the dog. B is incorrect as it provides a different name.\\nDepth: Both A and B demonstrate a similar level of depth as they both provide a straightforward answer to the question.\\n\\nGiven these evaluations, the preferred response is:\\n',\n",
" 'value': 'A',\n",
" 'score': 1}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_string_pairs(\n",
" prediction=\"The dog that ate the ice cream was named fido.\",\n",
" prediction_b=\"The dog's name is spot\",\n",
" input=\"What is the name of the dog that ate the ice cream?\",\n",
" reference=\"The dog's name is fido\",\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -1,456 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Comparing Chain Outputs\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/examples/comparisons.ipynb)\n",
"\n",
"Suppose you have two different prompts (or LLMs). How do you know which will generate \"better\" results?\n",
"\n",
"One automated way to predict the preferred configuration is to use a `PairwiseStringEvaluator` like the `PairwiseStringEvalChain`<a name=\"cite_ref-1\"></a>[<sup>[1]</sup>](#cite_note-1). This chain prompts an LLM to select which output is preferred, given a specific input.\n",
"\n",
"For this evaluation, we will need 3 things:\n",
"1. An evaluator\n",
"2. A dataset of inputs\n",
"3. 2 (or more) LLMs, Chains, or Agents to compare\n",
"\n",
"Then we will aggregate the results to determine the preferred model.\n",
"\n",
"### Step 1. Create the Evaluator\n",
"\n",
"In this example, you will use gpt-4 to select which output is preferred."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet langchain langchain-openai"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"eval_chain = load_evaluator(\"pairwise_string\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2. Select Dataset\n",
"\n",
"If you already have real usage data for your LLM, you can use a representative sample. More examples\n",
"provide more reliable results. We will use some example queries someone might have about how to use langchain here."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset parquet (/Users/wfh/.cache/huggingface/datasets/LangChainDatasets___parquet/LangChainDatasets--langchain-howto-queries-bbb748bbee7e77aa/0.0.0/14a00e99c0d15a23649d0db8944380ac81082d4b021f398733dd84f3a6c569a7)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a2358d37246640ce95e0f9940194590a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"langchain-howto-queries\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 3. Define Models to Compare\n",
"\n",
"We will be comparing two agents in this case."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.agents import AgentType, Tool, initialize_agent\n",
"from langchain_community.utilities import SerpAPIWrapper\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"# Initialize the language model\n",
"# You can add your own OpenAI API key by adding openai_api_key=\"<your_api_key>\"\n",
"llm = ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-0613\")\n",
"\n",
"# Initialize the SerpAPIWrapper for search functionality\n",
"# Replace <your_api_key> in openai_api_key=\"<your_api_key>\" with your actual SerpAPI key.\n",
"search = SerpAPIWrapper()\n",
"\n",
"# Define a list of tools offered by the agent\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" coroutine=search.arun,\n",
" description=\"Useful when you need to answer questions about current events. You should ask targeted questions.\",\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"functions_agent = initialize_agent(\n",
" tools, llm, agent=AgentType.OPENAI_MULTI_FUNCTIONS, verbose=False\n",
")\n",
"conversations_agent = initialize_agent(\n",
" tools, llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=False\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 4. Generate Responses\n",
"\n",
"We will generate outputs for each of the models before evaluating them."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "87277cb39a1a4726bb7cc533a24e2ea4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/20 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import asyncio\n",
"\n",
"from tqdm.notebook import tqdm\n",
"\n",
"results = []\n",
"agents = [functions_agent, conversations_agent]\n",
"concurrency_level = 6 # How many concurrent agents to run. May need to decrease if OpenAI is rate limiting.\n",
"\n",
"# We will only run the first 20 examples of this dataset to speed things up\n",
"# This will lead to larger confidence intervals downstream.\n",
"batch = []\n",
"for example in tqdm(dataset[:20]):\n",
" batch.extend([agent.acall(example[\"inputs\"]) for agent in agents])\n",
" if len(batch) >= concurrency_level:\n",
" batch_results = await asyncio.gather(*batch, return_exceptions=True)\n",
" results.extend(list(zip(*[iter(batch_results)] * 2)))\n",
" batch = []\n",
"if batch:\n",
" batch_results = await asyncio.gather(*batch, return_exceptions=True)\n",
" results.extend(list(zip(*[iter(batch_results)] * 2)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 5. Evaluate Pairs\n",
"\n",
"Now it's time to evaluate the results. For each agent response, run the evaluation chain to select which output is preferred (or return a tie).\n",
"\n",
"Randomly select the input order to reduce the likelihood that one model will be preferred just because it is presented first."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import random\n",
"\n",
"\n",
"def predict_preferences(dataset, results) -> list:\n",
" preferences = []\n",
"\n",
" for example, (res_a, res_b) in zip(dataset, results):\n",
" input_ = example[\"inputs\"]\n",
" # Flip a coin to reduce persistent position bias\n",
" if random.random() < 0.5:\n",
" pred_a, pred_b = res_a, res_b\n",
" a, b = \"a\", \"b\"\n",
" else:\n",
" pred_a, pred_b = res_b, res_a\n",
" a, b = \"b\", \"a\"\n",
" eval_res = eval_chain.evaluate_string_pairs(\n",
" prediction=pred_a[\"output\"] if isinstance(pred_a, dict) else str(pred_a),\n",
" prediction_b=pred_b[\"output\"] if isinstance(pred_b, dict) else str(pred_b),\n",
" input=input_,\n",
" )\n",
" if eval_res[\"value\"] == \"A\":\n",
" preferences.append(a)\n",
" elif eval_res[\"value\"] == \"B\":\n",
" preferences.append(b)\n",
" else:\n",
" preferences.append(None) # No preference\n",
" return preferences"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"preferences = predict_preferences(dataset, results)"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"**Print out the ratio of preferences.**"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OpenAI Functions Agent: 95.00%\n",
"None: 5.00%\n"
]
}
],
"source": [
"from collections import Counter\n",
"\n",
"name_map = {\n",
" \"a\": \"OpenAI Functions Agent\",\n",
" \"b\": \"Structured Chat Agent\",\n",
"}\n",
"counts = Counter(preferences)\n",
"pref_ratios = {k: v / len(preferences) for k, v in counts.items()}\n",
"for k, v in pref_ratios.items():\n",
" print(f\"{name_map.get(k)}: {v:.2%}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Estimate Confidence Intervals\n",
"\n",
"The results seem pretty clear, but if you want to have a better sense of how confident we are, that model \"A\" (the OpenAI Functions Agent) is the preferred model, we can calculate confidence intervals. \n",
"\n",
"Below, use the Wilson score to estimate the confidence interval."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from math import sqrt\n",
"\n",
"\n",
"def wilson_score_interval(\n",
" preferences: list, which: str = \"a\", z: float = 1.96\n",
") -> tuple:\n",
" \"\"\"Estimate the confidence interval using the Wilson score.\n",
"\n",
" See: https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval\n",
" for more details, including when to use it and when it should not be used.\n",
" \"\"\"\n",
" total_preferences = preferences.count(\"a\") + preferences.count(\"b\")\n",
" n_s = preferences.count(which)\n",
"\n",
" if total_preferences == 0:\n",
" return (0, 0)\n",
"\n",
" p_hat = n_s / total_preferences\n",
"\n",
" denominator = 1 + (z**2) / total_preferences\n",
" adjustment = (z / denominator) * sqrt(\n",
" p_hat * (1 - p_hat) / total_preferences\n",
" + (z**2) / (4 * total_preferences * total_preferences)\n",
" )\n",
" center = (p_hat + (z**2) / (2 * total_preferences)) / denominator\n",
" lower_bound = min(max(center - adjustment, 0.0), 1.0)\n",
" upper_bound = min(max(center + adjustment, 0.0), 1.0)\n",
"\n",
" return (lower_bound, upper_bound)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The \"OpenAI Functions Agent\" would be preferred between 83.18% and 100.00% percent of the time (with 95% confidence).\n",
"The \"Structured Chat Agent\" would be preferred between 0.00% and 16.82% percent of the time (with 95% confidence).\n"
]
}
],
"source": [
"for which_, name in name_map.items():\n",
" low, high = wilson_score_interval(preferences, which=which_)\n",
" print(\n",
" f'The \"{name}\" would be preferred between {low:.2%} and {high:.2%} percent of the time (with 95% confidence).'\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Print out the p-value.**"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The p-value is 0.00000. If the null hypothesis is true (i.e., if the selected eval chain actually has no preference between the models),\n",
"then there is a 0.00038% chance of observing the OpenAI Functions Agent be preferred at least 19\n",
"times out of 19 trials.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/gf/6rnp_mbx5914kx7qmmh7xzmw0000gn/T/ipykernel_15978/384907688.py:6: DeprecationWarning: 'binom_test' is deprecated in favour of 'binomtest' from version 1.7.0 and will be removed in Scipy 1.12.0.\n",
" p_value = stats.binom_test(successes, n, p=0.5, alternative=\"two-sided\")\n"
]
}
],
"source": [
"from scipy import stats\n",
"\n",
"preferred_model = max(pref_ratios, key=pref_ratios.get)\n",
"successes = preferences.count(preferred_model)\n",
"n = len(preferences) - preferences.count(None)\n",
"p_value = stats.binom_test(successes, n, p=0.5, alternative=\"two-sided\")\n",
"print(\n",
" f\"\"\"The p-value is {p_value:.5f}. If the null hypothesis is true (i.e., if the selected eval chain actually has no preference between the models),\n",
"then there is a {p_value:.5%} chance of observing the {name_map.get(preferred_model)} be preferred at least {successes}\n",
"times out of {n} trials.\"\"\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a name=\"cite_note-1\"></a>_1. Note: Automated evals are still an open research topic and are best used alongside other evaluation approaches. \n",
"LLM preferences exhibit biases, including banal ones like the order of outputs.\n",
"In choosing preferences, \"ground truth\" may not be taken into account, which may lead to scores that aren't grounded in utility._"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

@ -1,12 +0,0 @@
---
sidebar_position: 5
---
# Examples
🚧 _Docs under construction_ 🚧
Below are some examples for inspecting and checking different chains.
import DocCardList from "@theme/DocCardList";
<DocCardList />

@ -1,43 +0,0 @@
import DocCardList from "@theme/DocCardList";
# Evaluation
Building applications with language models involves many moving parts. One of the most critical components is ensuring that the outcomes produced by your models are reliable and useful across a broad array of inputs, and that they work well with your application's other software components. Ensuring reliability usually boils down to some combination of application design, testing & evaluation, and runtime checks.
The guides in this section review the APIs and functionality LangChain provides to help you better evaluate your applications. Evaluation and testing are both critical when thinking about deploying LLM applications, since production environments require repeatable and useful outcomes.
LangChain offers various types of evaluators to help you measure performance and integrity on diverse data, and we hope to encourage the community to create and share other useful evaluators so everyone can improve. These docs will introduce the evaluator types, how to use them, and provide some examples of their use in real-world scenarios.
These built-in evaluators all integrate smoothly with [LangSmith](/docs/langsmith), and allow you to create feedback loops that improve your application over time and prevent regressions.
Each evaluator type in LangChain comes with ready-to-use implementations and an extensible API that allows for customization according to your unique requirements. Here are some of the types of evaluators we offer:
- [String Evaluators](/docs/guides/productionization/evaluation/string/): These evaluators assess the predicted string for a given input, usually comparing it against a reference string.
- [Trajectory Evaluators](/docs/guides/productionization/evaluation/trajectory/): These are used to evaluate the entire trajectory of agent actions.
- [Comparison Evaluators](/docs/guides/productionization/evaluation/comparison/): These evaluators are designed to compare predictions from two runs on a common input.
These evaluators can be used across various scenarios and can be applied to different chain and LLM implementations in the LangChain library.
We also are working to share guides and cookbooks that demonstrate how to use these evaluators in real-world scenarios, such as:
- [Chain Comparisons](/docs/guides/productionization/evaluation/examples/comparisons): This example uses a comparison evaluator to predict the preferred output. It reviews ways to measure confidence intervals to select statistically significant differences in aggregate preference scores across different models or prompts.
## LangSmith Evaluation
LangSmith provides an integrated evaluation and tracing framework that allows you to check for regressions, compare systems, and easily identify and fix any sources of errors and performance issues. Check out the docs on [LangSmith Evaluation](https://docs.smith.langchain.com/evaluation) and additional [cookbooks](https://docs.smith.langchain.com/cookbook) for more detailed information on evaluating your applications.
## LangChain benchmarks
Your application quality is a function both of the LLM you choose and the prompting and data retrieval strategies you employ to provide model contexet. We have published a number of benchmark tasks within the [LangChain Benchmarks](https://langchain-ai.github.io/langchain-benchmarks/) package to grade different LLM systems on tasks such as:
- Agent tool use
- Retrieval-augmented question-answering
- Structured Extraction
Check out the docs for examples and leaderboard information.
## Reference Docs
For detailed information on the available evaluators, including how to instantiate, configure, and customize them, check out the [reference documentation](https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.evaluation) directly.
<DocCardList />

@ -1,467 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "4cf569a7-9a1d-4489-934e-50e57760c907",
"metadata": {},
"source": [
"# Criteria Evaluation\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/criteria_eval_chain.ipynb)\n",
"\n",
"In scenarios where you wish to assess a model's output using a specific rubric or criteria set, the `criteria` evaluator proves to be a handy tool. It allows you to verify if an LLM or Chain's output complies with a defined set of criteria.\n",
"\n",
"To understand its functionality and configurability in depth, refer to the reference documentation of the [CriteriaEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain) class.\n",
"\n",
"### Usage without references\n",
"\n",
"In this example, you will use the `CriteriaEvalChain` to check whether an output is concise. First, create the evaluation chain to predict whether outputs are \"concise\"."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6005ebe8-551e-47a5-b4df-80575a068552",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.evaluation import load_evaluator\n",
"\n",
"evaluator = load_evaluator(\"criteria\", criteria=\"conciseness\")\n",
"\n",
"# This is equivalent to loading using the enum\n",
"from langchain.evaluation import EvaluatorType\n",
"\n",
"evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria=\"conciseness\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "22f83fb8-82f4-4310-a877-68aaa0789199",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'The criterion is conciseness, which means the submission should be brief and to the point. \\n\\nLooking at the submission, the answer to the question \"What\\'s 2+2?\" is indeed \"four\". However, the respondent has added extra information, stating \"That\\'s an elementary question.\" This statement does not contribute to answering the question and therefore makes the response less concise.\\n\\nTherefore, the submission does not meet the criterion of conciseness.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.\",\n",
" input=\"What's 2+2?\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "35e61e4d-b776-4f6b-8c89-da5d3604134a",
"metadata": {},
"source": [
"#### Output Format\n",
"\n",
"All string evaluators expose an [evaluate_strings](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html?highlight=evaluate_strings#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.evaluate_strings) (or async [aevaluate_strings](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.html?highlight=evaluate_strings#langchain.evaluation.criteria.eval_chain.CriteriaEvalChain.aevaluate_strings)) method, which accepts:\n",
"\n",
"- input (str) The input to the agent.\n",
"- prediction (str) The predicted response.\n",
"\n",
"The criteria evaluators return a dictionary with the following values:\n",
"- score: Binary integer 0 to 1, where 1 would mean that the output is compliant with the criteria, and 0 otherwise\n",
"- value: A \"Y\" or \"N\" corresponding to the score\n",
"- reasoning: String \"chain of thought reasoning\" from the LLM generated prior to creating the score"
]
},
{
"cell_type": "markdown",
"id": "c40b1ac7-8f95-48ed-89a2-623bcc746461",
"metadata": {},
"source": [
"## Using Reference Labels\n",
"\n",
"Some criteria (such as correctness) require reference labels to work correctly. To do this, initialize the `labeled_criteria` evaluator and call the evaluator with a `reference` string."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "20d8a86b-beba-42ce-b82c-d9e5ebc13686",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"With ground truth: 1\n"
]
}
],
"source": [
"evaluator = load_evaluator(\"labeled_criteria\", criteria=\"correctness\")\n",
"\n",
"# We can even override the model's learned knowledge using ground truth labels\n",
"eval_result = evaluator.evaluate_strings(\n",
" input=\"What is the capital of the US?\",\n",
" prediction=\"Topeka, KS\",\n",
" reference=\"The capital of the US is Topeka, KS, where it permanently moved from Washington D.C. on May 16, 2023\",\n",
")\n",
"print(f'With ground truth: {eval_result[\"score\"]}')"
]
},
{
"cell_type": "markdown",
"id": "e05b5748-d373-4ff8-85d9-21da4641e84c",
"metadata": {},
"source": [
"**Default Criteria**\n",
"\n",
"Most of the time, you'll want to define your own custom criteria (see below), but we also provide some common criteria you can load with a single string.\n",
"Here's a list of pre-implemented criteria. Note that in the absence of labels, the LLM merely predicts what it thinks the best answer is and is not grounded in actual law or context."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "47de7359-db3e-4cad-bcfa-4fe834dea893",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<Criteria.CONCISENESS: 'conciseness'>,\n",
" <Criteria.RELEVANCE: 'relevance'>,\n",
" <Criteria.CORRECTNESS: 'correctness'>,\n",
" <Criteria.COHERENCE: 'coherence'>,\n",
" <Criteria.HARMFULNESS: 'harmfulness'>,\n",
" <Criteria.MALICIOUSNESS: 'maliciousness'>,\n",
" <Criteria.HELPFULNESS: 'helpfulness'>,\n",
" <Criteria.CONTROVERSIALITY: 'controversiality'>,\n",
" <Criteria.MISOGYNY: 'misogyny'>,\n",
" <Criteria.CRIMINALITY: 'criminality'>,\n",
" <Criteria.INSENSITIVITY: 'insensitivity'>]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.evaluation import Criteria\n",
"\n",
"# For a list of other default supported criteria, try calling `supported_default_criteria`\n",
"list(Criteria)"
]
},
{
"cell_type": "markdown",
"id": "077c4715-e857-44a3-9f87-346642586a8d",
"metadata": {},
"source": [
"## Custom Criteria\n",
"\n",
"To evaluate outputs against your own custom criteria, or to be more explicit the definition of any of the default criteria, pass in a dictionary of `\"criterion_name\": \"criterion_description\"`\n",
"\n",
"Note: it's recommended that you create a single evaluator per criterion. This way, separate feedback can be provided for each aspect. Additionally, if you provide antagonistic criteria, the evaluator won't be very useful, as it will be configured to predict compliance for ALL of the criteria provided."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "bafa0a11-2617-4663-84bf-24df7d0736be",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': \"The criterion asks if the output contains numeric or mathematical information. The joke in the submission does contain mathematical information. It refers to the mathematical concept of squaring a number and also mentions 'pi', which is a mathematical constant. Therefore, the submission does meet the criterion.\\n\\nY\", 'value': 'Y', 'score': 1}\n",
"{'reasoning': 'Let\\'s assess the submission based on the given criteria:\\n\\n1. Numeric: The output does not contain any explicit numeric information. The word \"square\" and \"pi\" are mathematical terms but they are not numeric information per se.\\n\\n2. Mathematical: The output does contain mathematical information. The terms \"square\" and \"pi\" are mathematical terms. The joke is a play on the mathematical concept of squaring a number (in this case, pi).\\n\\n3. Grammatical: The output is grammatically correct. The sentence structure, punctuation, and word usage are all correct.\\n\\n4. Logical: The output is logical. It makes sense within the context of the joke. The joke is a play on words between the mathematical concept of squaring a number (pi) and eating a square pie.\\n\\nBased on the above analysis, the submission does not meet all the criteria because it does not contain numeric information.\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"custom_criterion = {\n",
" \"numeric\": \"Does the output contain numeric or mathematical information?\"\n",
"}\n",
"\n",
"eval_chain = load_evaluator(\n",
" EvaluatorType.CRITERIA,\n",
" criteria=custom_criterion,\n",
")\n",
"query = \"Tell me a joke\"\n",
"prediction = \"I ate some square pie but I don't know the square of pi.\"\n",
"eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query)\n",
"print(eval_result)\n",
"\n",
"# If you wanted to specify multiple criteria. Generally not recommended\n",
"custom_criteria = {\n",
" \"numeric\": \"Does the output contain numeric information?\",\n",
" \"mathematical\": \"Does the output contain mathematical information?\",\n",
" \"grammatical\": \"Is the output grammatically correct?\",\n",
" \"logical\": \"Is the output logical?\",\n",
"}\n",
"\n",
"eval_chain = load_evaluator(\n",
" EvaluatorType.CRITERIA,\n",
" criteria=custom_criteria,\n",
")\n",
"eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query)\n",
"print(\"Multi-criteria evaluation\")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "07485cce-8d52-43a0-bdad-76ec7dacfb51",
"metadata": {},
"source": [
"## Using Constitutional Principles\n",
"\n",
"Custom rubrics are similar to principles from [Constitutional AI](https://arxiv.org/abs/2212.08073). You can directly use your `ConstitutionalPrinciple` objects to\n",
"instantiate the chain and take advantage of the many existing principles in LangChain."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "99e3c242-5b12-4bd5-b487-64990a159655",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"54 available principles\n"
]
},
{
"data": {
"text/plain": [
"[('harmful1',\n",
" ConstitutionalPrinciple(critique_request='Identify specific ways in which the assistants last response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.', revision_request='Please rewrite the assistant response to remove any and all harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.', name='harmful1')),\n",
" ('harmful2',\n",
" ConstitutionalPrinciple(critique_request='Explain ways in which the assistants preceding response may be harmful to either the human or others. For example, if the assistant says anything that encourages dangerous or illegal activity, make sure to point it out. Other examples of harm include racism, sexism, and other social biases.', revision_request='Please rewrite the assistant response to remove any and all harmful content, including anything dangerous, illegal, racist, sexist or socially biased.', name='harmful2')),\n",
" ('harmful3',\n",
" ConstitutionalPrinciple(critique_request='Identify all ways in which the assistants last response is harmful, unethical, or socially biased. Furthermore, provide specific details on how the assistant can improve its response.', revision_request='Please rewrite the assistant response to remove all harmful, unethical, or socially biased content, and move the conversation in a positive direction.', name='harmful3')),\n",
" ('harmful4',\n",
" ConstitutionalPrinciple(critique_request='Identify specific ways in which the assistants precedings response is harmful. Also point out potential harmfulness in the humans questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', revision_request='Rewrite the assistant response to remove all harmful content, and to politely point out any harmful assumptions from the human, such as racism, sexism, toxicity.', name='harmful4')),\n",
" ('insensitive',\n",
" ConstitutionalPrinciple(critique_request='Discuss the assistants last response to the human and whether it is in any way insensitive, sexist, racist, or socially inappropriate.', revision_request='Revise the assistants last response to remove content that is in any way insensitive, sexist, racist, or socially inappropriate.', name='insensitive'))]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains.constitutional_ai.principles import PRINCIPLES\n",
"\n",
"print(f\"{len(PRINCIPLES)} available principles\")\n",
"list(PRINCIPLES.items())[:5]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f4061bc0-a88a-4d1c-88a0-8003bba084c7",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'The criterion asks to identify if the assistant\\'s response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.\\n\\nLooking at the assistant\\'s response, it is clear that it is not racist or sexist as it does not discriminate or stereotype based on race or gender. \\n\\nThe response is also not illegal as it does not involve any criminal activity or encourage any form of illegal behavior.\\n\\nThe response is not dangerous as it does not pose a physical threat or risk to anyone\\'s safety.\\n\\nHowever, the assistant\\'s response can be considered harmful and toxic as it uses derogatory language (\"lilly-livered nincompoop\") to describe \\'Will\\'. This can be seen as a form of verbal abuse or insult, which can cause emotional harm.\\n\\nThe response can also be seen as unethical, as it is generally considered inappropriate to insult or belittle someone in this manner.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria=PRINCIPLES[\"harmful1\"])\n",
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"I say that man is a lilly-livered nincompoop\",\n",
" input=\"What do you think of Will?\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "ae60b5e3-ceac-46b1-aabb-ee36930cb57c",
"metadata": {
"tags": []
},
"source": [
"## Configuring the LLM\n",
"\n",
"If you don't specify an eval LLM, the `load_evaluator` method will initialize a `gpt-4` LLM to power the grading chain. Below, use an anthropic model instead."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "1717162d-f76c-4a14-9ade-168d6fa42b7a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet anthropic\n",
"# %env ANTHROPIC_API_KEY=<API_KEY>"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8727e6f4-aaba-472d-bb7d-09fc1a0f0e2a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_community.chat_models import ChatAnthropic\n",
"\n",
"llm = ChatAnthropic(temperature=0)\n",
"evaluator = load_evaluator(\"criteria\", llm=llm, criteria=\"conciseness\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "3f6f0d8b-cf42-4241-85ae-35b3ce8152a0",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'Step 1) Analyze the conciseness criterion: Is the submission concise and to the point?\\nStep 2) The submission provides extraneous information beyond just answering the question directly. It characterizes the question as \"elementary\" and provides reasoning for why the answer is 4. This additional commentary makes the submission not fully concise.\\nStep 3) Therefore, based on the analysis of the conciseness criterion, the submission does not meet the criteria.\\n\\nN', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.\",\n",
" input=\"What's 2+2?\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "5e7fc7bb-3075-4b44-9c16-3146a39ae497",
"metadata": {},
"source": [
"# Configuring the Prompt\n",
"\n",
"If you want to completely customize the prompt, you can initialize the evaluator with a custom prompt template as follows."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "22e57704-682f-44ff-96ba-e915c73269c0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"fstring = \"\"\"Respond Y or N based on how well the following response follows the specified rubric. Grade only based on the rubric and expected response:\n",
"\n",
"Grading Rubric: {criteria}\n",
"Expected Response: {reference}\n",
"\n",
"DATA:\n",
"---------\n",
"Question: {input}\n",
"Response: {output}\n",
"---------\n",
"Write out your explanation for each criterion, then respond with Y or N on a new line.\"\"\"\n",
"\n",
"prompt = PromptTemplate.from_template(fstring)\n",
"\n",
"evaluator = load_evaluator(\"labeled_criteria\", criteria=\"correctness\", prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "5d6b0eca-7aea-4073-a65a-18c3a9cdb5af",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'reasoning': 'Correctness: No, the response is not correct. The expected response was \"It\\'s 17 now.\" but the response given was \"What\\'s 2+2? That\\'s an elementary question. The answer you\\'re looking for is that two and two is four.\"', 'value': 'N', 'score': 0}\n"
]
}
],
"source": [
"eval_result = evaluator.evaluate_strings(\n",
" prediction=\"What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.\",\n",
" input=\"What's 2+2?\",\n",
" reference=\"It's 17 now.\",\n",
")\n",
"print(eval_result)"
]
},
{
"cell_type": "markdown",
"id": "f2662405-353a-4a73-b867-784d12cafcf1",
"metadata": {},
"source": [
"## Conclusion\n",
"\n",
"In these examples, you used the `CriteriaEvalChain` to evaluate model outputs against custom criteria, including a custom rubric and constitutional principles.\n",
"\n",
"Remember when selecting criteria to decide whether they ought to require ground truth labels or not. Things like \"correctness\" are best evaluated with ground truth or with extensive context. Also, remember to pick aligned principles for a given chain so that the classification makes sense."
]
},
{
"cell_type": "markdown",
"id": "a684e2f1",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -1,209 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "4460f924-1738-4dc5-999f-c26383aba0a4",
"metadata": {},
"source": [
"# Custom String Evaluator\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/langchain-ai/langchain/blob/master/docs/docs/guides/evaluation/string/custom.ipynb)\n",
"\n",
"You can make your own custom string evaluators by inheriting from the `StringEvaluator` class and implementing the `_evaluate_strings` (and `_aevaluate_strings` for async support) methods.\n",
"\n",
"In this example, you will create a perplexity evaluator using the HuggingFace [evaluate](https://huggingface.co/docs/evaluate/index) library.\n",
"[Perplexity](https://en.wikipedia.org/wiki/Perplexity) is a measure of how well the generated text would be predicted by the model used to compute the metric."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "90ec5942-4b14-47b1-baff-9dd2a9f17a4e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%pip install --upgrade --quiet evaluate > /dev/null"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "54fdba68-0ae7-4102-a45b-dabab86c97ac",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from typing import Any, Optional\n",
"\n",
"from evaluate import load\n",
"from langchain.evaluation import StringEvaluator\n",
"\n",
"\n",
"class PerplexityEvaluator(StringEvaluator):\n",
" \"\"\"Evaluate the perplexity of a predicted string.\"\"\"\n",
"\n",
" def __init__(self, model_id: str = \"gpt2\"):\n",
" self.model_id = model_id\n",
" self.metric_fn = load(\n",
" \"perplexity\", module_type=\"metric\", model_id=self.model_id, pad_token=0\n",
" )\n",
"\n",
" def _evaluate_strings(\n",
" self,\n",
" *,\n",
" prediction: str,\n",
" reference: Optional[str] = None,\n",
" input: Optional[str] = None,\n",
" **kwargs: Any,\n",
" ) -> dict:\n",
" results = self.metric_fn.compute(\n",
" predictions=[prediction], model_id=self.model_id\n",
" )\n",
" ppl = results[\"perplexities\"][0]\n",
" return {\"score\": ppl}"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "52767568-8075-4f77-93c9-80e1a7e5cba3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"evaluator = PerplexityEvaluator()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "697ee0c0-d1ae-4a55-a542-a0f8e602c28a",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using pad_token, but it is not set yet.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "467109d44654486e8b415288a319fc2c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"{'score': 190.3675537109375}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluator.evaluate_strings(prediction=\"The rains in Spain fall mainly on the plain.\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "5089d9d1-eae6-4d47-b4f6-479e5d887d74",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using pad_token, but it is not set yet.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d3266f6f06d746e1bb03ce4aca07d9b9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"{'score': 1982.0709228515625}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# The perplexity is much higher since LangChain was introduced after 'gpt-2' was released and because it is never used in the following context.\n",
"evaluator.evaluate_strings(prediction=\"The rains in Spain fall mainly on LangChain.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5eaa178f-6ba3-47ae-b3dc-1b196af6d213",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save