You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MangoHud/src/overlay.cpp

2732 lines
105 KiB
C++

/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <thread>
#include <chrono>
#include <unordered_map>
#include <mutex>
#include <vector>
#include <list>
#include <vulkan/vulkan.h>
#include <vulkan/vk_layer.h>
#include "imgui.h"
#include "overlay.h"
#include "font_default.h"
// #include "util/debug.h"
#include <inttypes.h>
#include "mesa/util/macros.h"
#include "mesa/util/os_time.h"
#include "mesa/util/os_socket.h"
#include "vk_enum_to_str.h"
#include <vulkan/vk_util.h>
#include "string_utils.h"
#include "file_utils.h"
#include "gpu.h"
#include "logging.h"
#include "keybinds.h"
#include "cpu.h"
#include "loaders/loader_nvml.h"
#include "memory.h"
#include "notify.h"
#include "blacklist.h"
#include "version.h"
#ifdef HAVE_DBUS
#include "dbus_info.h"
float g_overflow = 50.f /* 3333ms * 0.5 / 16.6667 / 2 (to edge and back) */;
#endif
bool open = false;
string gpuString;
float offset_x, offset_y, hudSpacing;
int hudFirstRow, hudSecondRow;
struct amdGpu amdgpu;
struct fps_limit fps_limit_stats;
/* Mapped from VkInstace/VkPhysicalDevice */
struct instance_data {
struct vk_instance_dispatch_table vtable;
VkInstance instance;
struct overlay_params params;
bool first_line_printed;
int control_client;
/* Dumping of frame stats to a file has been enabled. */
bool capture_enabled;
/* Dumping of frame stats to a file has been enabled and started. */
bool capture_started;
string engineName, engineVersion;
notify_thread notifier;
};
/* Mapped from VkDevice */
struct queue_data;
struct device_data {
struct instance_data *instance;
PFN_vkSetDeviceLoaderData set_device_loader_data;
struct vk_device_dispatch_table vtable;
VkPhysicalDevice physical_device;
VkDevice device;
VkPhysicalDeviceProperties properties;
struct queue_data *graphic_queue;
std::vector<struct queue_data *> queues;
};
/* Mapped from VkCommandBuffer */
struct queue_data;
struct command_buffer_data {
struct device_data *device;
VkCommandBufferLevel level;
VkCommandBuffer cmd_buffer;
struct queue_data *queue_data;
};
/* Mapped from VkQueue */
struct queue_data {
struct device_data *device;
VkQueue queue;
VkQueueFlags flags;
uint32_t family_index;
};
struct overlay_draw {
VkCommandBuffer command_buffer;
VkSemaphore cross_engine_semaphore;
VkSemaphore semaphore;
VkFence fence;
VkBuffer vertex_buffer;
VkDeviceMemory vertex_buffer_mem;
VkDeviceSize vertex_buffer_size;
VkBuffer index_buffer;
VkDeviceMemory index_buffer_mem;
VkDeviceSize index_buffer_size;
};
/* Mapped from VkSwapchainKHR */
struct swapchain_data {
struct device_data *device;
VkSwapchainKHR swapchain;
unsigned width, height;
VkFormat format;
std::vector<VkImage> images;
std::vector<VkImageView> image_views;
std::vector<VkFramebuffer> framebuffers;
VkRenderPass render_pass;
VkDescriptorPool descriptor_pool;
VkDescriptorSetLayout descriptor_layout;
VkDescriptorSet descriptor_set;
VkSampler font_sampler;
VkPipelineLayout pipeline_layout;
VkPipeline pipeline;
VkCommandPool command_pool;
std::list<overlay_draw *> draws; /* List of struct overlay_draw */
ImFont* font = nullptr;
bool font_uploaded;
VkImage font_image;
VkImageView font_image_view;
VkDeviceMemory font_mem;
VkBuffer upload_font_buffer;
VkDeviceMemory upload_font_buffer_mem;
/**/
ImGuiContext* imgui_context;
ImVec2 window_size;
/**/
uint64_t last_present_time;
unsigned n_frames_since_update;
uint64_t last_fps_update;
double frametime;
double frametimeDisplay;
const char* cpuString;
const char* gpuString;
struct swapchain_stats sw_stats;
/* Over a single frame */
struct frame_stat frame_stats;
/* Over fps_sampling_period */
struct frame_stat accumulated_stats;
};
// single global lock, for simplicity
std::mutex global_lock;
typedef std::lock_guard<std::mutex> scoped_lock;
std::unordered_map<uint64_t, void *> vk_object_to_data;
thread_local ImGuiContext* __MesaImGui;
#define HKEY(obj) ((uint64_t)(obj))
#define FIND(type, obj) (reinterpret_cast<type *>(find_object_data(HKEY(obj))))
static void *find_object_data(uint64_t obj)
{
scoped_lock lk(global_lock);
return vk_object_to_data[obj];
}
static void map_object(uint64_t obj, void *data)
{
scoped_lock lk(global_lock);
vk_object_to_data[obj] = data;
}
static void unmap_object(uint64_t obj)
{
scoped_lock lk(global_lock);
vk_object_to_data.erase(obj);
}
/**/
#define VK_CHECK(expr) \
do { \
VkResult __result = (expr); \
if (__result != VK_SUCCESS) { \
fprintf(stderr, "'%s' line %i failed with %s\n", \
#expr, __LINE__, vk_Result_to_str(__result)); \
} \
} while (0)
/**/
static VkLayerInstanceCreateInfo *get_instance_chain_info(const VkInstanceCreateInfo *pCreateInfo,
VkLayerFunction func)
{
vk_foreach_struct(item, pCreateInfo->pNext) {
if (item->sType == VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO &&
((VkLayerInstanceCreateInfo *) item)->function == func)
return (VkLayerInstanceCreateInfo *) item;
}
unreachable("instance chain info not found");
return NULL;
}
static VkLayerDeviceCreateInfo *get_device_chain_info(const VkDeviceCreateInfo *pCreateInfo,
VkLayerFunction func)
{
vk_foreach_struct(item, pCreateInfo->pNext) {
if (item->sType == VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO &&
((VkLayerDeviceCreateInfo *) item)->function == func)
return (VkLayerDeviceCreateInfo *)item;
}
unreachable("device chain info not found");
return NULL;
}
/**/
static struct instance_data *new_instance_data(VkInstance instance)
{
struct instance_data *data = new instance_data();
data->instance = instance;
data->control_client = -1;
map_object(HKEY(data->instance), data);
return data;
}
static void destroy_instance_data(struct instance_data *data)
{
if (data->params.control >= 0)
os_socket_close(data->params.control);
unmap_object(HKEY(data->instance));
delete data;
}
static void instance_data_map_physical_devices(struct instance_data *instance_data,
bool map)
{
uint32_t physicalDeviceCount = 0;
instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
&physicalDeviceCount,
NULL);
std::vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
&physicalDeviceCount,
physicalDevices.data());
for (uint32_t i = 0; i < physicalDeviceCount; i++) {
if (map)
map_object(HKEY(physicalDevices[i]), instance_data);
else
unmap_object(HKEY(physicalDevices[i]));
}
}
/**/
static struct device_data *new_device_data(VkDevice device, struct instance_data *instance)
{
struct device_data *data = new device_data();
data->instance = instance;
data->device = device;
map_object(HKEY(data->device), data);
return data;
}
static struct queue_data *new_queue_data(VkQueue queue,
const VkQueueFamilyProperties *family_props,
uint32_t family_index,
struct device_data *device_data)
{
struct queue_data *data = new queue_data();
data->device = device_data;
data->queue = queue;
data->flags = family_props->queueFlags;
data->family_index = family_index;
map_object(HKEY(data->queue), data);
if (data->flags & VK_QUEUE_GRAPHICS_BIT)
device_data->graphic_queue = data;
return data;
}
static void destroy_queue(struct queue_data *data)
{
unmap_object(HKEY(data->queue));
delete data;
}
static void device_map_queues(struct device_data *data,
const VkDeviceCreateInfo *pCreateInfo)
{
uint32_t n_queues = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
n_queues += pCreateInfo->pQueueCreateInfos[i].queueCount;
data->queues.resize(n_queues);
struct instance_data *instance_data = data->instance;
uint32_t n_family_props;
instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
&n_family_props,
NULL);
std::vector<VkQueueFamilyProperties> family_props(n_family_props);
instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
&n_family_props,
family_props.data());
uint32_t queue_index = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
for (uint32_t j = 0; j < pCreateInfo->pQueueCreateInfos[i].queueCount; j++) {
VkQueue queue;
data->vtable.GetDeviceQueue(data->device,
pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex,
j, &queue);
VK_CHECK(data->set_device_loader_data(data->device, queue));
data->queues[queue_index++] =
new_queue_data(queue, &family_props[pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex],
pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex, data);
}
}
}
static void device_unmap_queues(struct device_data *data)
{
for (auto q : data->queues)
destroy_queue(q);
}
static void destroy_device_data(struct device_data *data)
{
unmap_object(HKEY(data->device));
delete data;
}
/**/
static struct command_buffer_data *new_command_buffer_data(VkCommandBuffer cmd_buffer,
VkCommandBufferLevel level,
struct device_data *device_data)
{
struct command_buffer_data *data = new command_buffer_data();
data->device = device_data;
data->cmd_buffer = cmd_buffer;
data->level = level;
map_object(HKEY(data->cmd_buffer), data);
return data;
}
static void destroy_command_buffer_data(struct command_buffer_data *data)
{
unmap_object(HKEY(data->cmd_buffer));
delete data;
}
/**/
static struct swapchain_data *new_swapchain_data(VkSwapchainKHR swapchain,
struct device_data *device_data)
{
struct instance_data *instance_data = device_data->instance;
struct swapchain_data *data = new swapchain_data();
data->device = device_data;
data->swapchain = swapchain;
data->window_size = ImVec2(instance_data->params.width, instance_data->params.height);
map_object(HKEY(data->swapchain), data);
return data;
}
static void destroy_swapchain_data(struct swapchain_data *data)
{
unmap_object(HKEY(data->swapchain));
delete data;
}
struct overlay_draw *get_overlay_draw(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct overlay_draw *draw = data->draws.empty() ?
nullptr : data->draws.front();
VkSemaphoreCreateInfo sem_info = {};
sem_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
if (draw && device_data->vtable.GetFenceStatus(device_data->device, draw->fence) == VK_SUCCESS) {
VK_CHECK(device_data->vtable.ResetFences(device_data->device,
1, &draw->fence));
data->draws.pop_front();
data->draws.push_back(draw);
return draw;
}
draw = new overlay_draw();
VkCommandBufferAllocateInfo cmd_buffer_info = {};
cmd_buffer_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmd_buffer_info.commandPool = data->command_pool;
cmd_buffer_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmd_buffer_info.commandBufferCount = 1;
VK_CHECK(device_data->vtable.AllocateCommandBuffers(device_data->device,
&cmd_buffer_info,
&draw->command_buffer));
VK_CHECK(device_data->set_device_loader_data(device_data->device,
draw->command_buffer));
VkFenceCreateInfo fence_info = {};
fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
VK_CHECK(device_data->vtable.CreateFence(device_data->device,
&fence_info,
NULL,
&draw->fence));
VK_CHECK(device_data->vtable.CreateSemaphore(device_data->device, &sem_info,
NULL, &draw->semaphore));
VK_CHECK(device_data->vtable.CreateSemaphore(device_data->device, &sem_info,
NULL, &draw->cross_engine_semaphore));
data->draws.push_back(draw);
return draw;
}
static void parse_command(struct instance_data *instance_data,
const char *cmd, unsigned cmdlen,
const char *param, unsigned paramlen)
{
if (!strncmp(cmd, "capture", cmdlen)) {
int value = atoi(param);
bool enabled = value > 0;
if (enabled) {
instance_data->capture_enabled = true;
} else {
instance_data->capture_enabled = false;
instance_data->capture_started = false;
}
}
}
#define BUFSIZE 4096
/**
* This function will process commands through the control file.
*
* A command starts with a colon, followed by the command, and followed by an
* option '=' and a parameter. It has to end with a semi-colon. A full command
* + parameter looks like:
*
* :cmd=param;
*/
static void process_char(struct instance_data *instance_data, char c)
{
static char cmd[BUFSIZE];
static char param[BUFSIZE];
static unsigned cmdpos = 0;
static unsigned parampos = 0;
static bool reading_cmd = false;
static bool reading_param = false;
switch (c) {
case ':':
cmdpos = 0;
parampos = 0;
reading_cmd = true;
reading_param = false;
break;
case ';':
if (!reading_cmd)
break;
cmd[cmdpos++] = '\0';
param[parampos++] = '\0';
parse_command(instance_data, cmd, cmdpos, param, parampos);
reading_cmd = false;
reading_param = false;
break;
case '=':
if (!reading_cmd)
break;
reading_param = true;
break;
default:
if (!reading_cmd)
break;
if (reading_param) {
/* overflow means an invalid parameter */
if (parampos >= BUFSIZE - 1) {
reading_cmd = false;
reading_param = false;
break;
}
param[parampos++] = c;
} else {
/* overflow means an invalid command */
if (cmdpos >= BUFSIZE - 1) {
reading_cmd = false;
break;
}
cmd[cmdpos++] = c;
}
}
}
static void control_send(struct instance_data *instance_data,
const char *cmd, unsigned cmdlen,
const char *param, unsigned paramlen)
{
unsigned msglen = 0;
char buffer[BUFSIZE];
assert(cmdlen + paramlen + 3 < BUFSIZE);
buffer[msglen++] = ':';
memcpy(&buffer[msglen], cmd, cmdlen);
msglen += cmdlen;
if (paramlen > 0) {
buffer[msglen++] = '=';
memcpy(&buffer[msglen], param, paramlen);
msglen += paramlen;
buffer[msglen++] = ';';
}
os_socket_send(instance_data->control_client, buffer, msglen, 0);
}
static void control_send_connection_string(struct device_data *device_data)
{
struct instance_data *instance_data = device_data->instance;
const char *controlVersionCmd = "MesaOverlayControlVersion";
const char *controlVersionString = "1";
control_send(instance_data, controlVersionCmd, strlen(controlVersionCmd),
controlVersionString, strlen(controlVersionString));
const char *deviceCmd = "DeviceName";
const char *deviceName = device_data->properties.deviceName;
control_send(instance_data, deviceCmd, strlen(deviceCmd),
deviceName, strlen(deviceName));
const char *mesaVersionCmd = "MesaVersion";
const char *mesaVersionString = "Mesa " PACKAGE_VERSION;
control_send(instance_data, mesaVersionCmd, strlen(mesaVersionCmd),
mesaVersionString, strlen(mesaVersionString));
}
static void control_client_check(struct device_data *device_data)
{
struct instance_data *instance_data = device_data->instance;
/* Already connected, just return. */
if (instance_data->control_client >= 0)
return;
int socket = os_socket_accept(instance_data->params.control);
if (socket == -1) {
if (errno != EAGAIN && errno != EWOULDBLOCK && errno != ECONNABORTED)
fprintf(stderr, "ERROR on socket: %s\n", strerror(errno));
return;
}
if (socket >= 0) {
os_socket_block(socket, false);
instance_data->control_client = socket;
control_send_connection_string(device_data);
}
}
static void control_client_disconnected(struct instance_data *instance_data)
{
os_socket_close(instance_data->control_client);
instance_data->control_client = -1;
}
static void process_control_socket(struct instance_data *instance_data)
{
const int client = instance_data->control_client;
if (client >= 0) {
char buf[BUFSIZE];
while (true) {
ssize_t n = os_socket_recv(client, buf, BUFSIZE, 0);
if (n == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
/* nothing to read, try again later */
break;
}
if (errno != ECONNRESET)
fprintf(stderr, "ERROR on connection: %s\n", strerror(errno));
control_client_disconnected(instance_data);
} else if (n == 0) {
/* recv() returns 0 when the client disconnects */
control_client_disconnected(instance_data);
}
for (ssize_t i = 0; i < n; i++) {
process_char(instance_data, buf[i]);
}
/* If we try to read BUFSIZE and receive BUFSIZE bytes from the
* socket, there's a good chance that there's still more data to be
* read, so we will try again. Otherwise, simply be done for this
* iteration and try again on the next frame.
*/
if (n < BUFSIZE)
break;
}
}
}
string exec(string command) {
char buffer[128];
string result = "";
// Open pipe to file
FILE* pipe = popen(command.c_str(), "r");
if (!pipe) {
return "popen failed!";
}
// read till end of process:
while (!feof(pipe)) {
// use buffer to read and add to result
if (fgets(buffer, 128, pipe) != NULL)
result += buffer;
}
pclose(pipe);
return result;
}
void init_cpu_stats(overlay_params& params)
{
auto& enabled = params.enabled;
enabled[OVERLAY_PARAM_ENABLED_cpu_stats] = cpuStats.Init()
&& enabled[OVERLAY_PARAM_ENABLED_cpu_stats];
enabled[OVERLAY_PARAM_ENABLED_cpu_temp] = cpuStats.GetCpuFile()
&& enabled[OVERLAY_PARAM_ENABLED_cpu_temp];
}
struct PCI_BUS {
int domain;
int bus;
int slot;
int func;
};
void init_gpu_stats(uint32_t& vendorID, overlay_params& params)
{
if (!params.enabled[OVERLAY_PARAM_ENABLED_gpu_stats])
return;
PCI_BUS pci;
bool pci_bus_parsed = false;
const char *pci_dev = nullptr;
if (!params.pci_dev.empty())
pci_dev = params.pci_dev.c_str();
// for now just checks if pci bus parses correctly, if at all necessary
if (pci_dev) {
if (sscanf(pci_dev, "%04x:%02x:%02x.%x",
&pci.domain, &pci.bus,
&pci.slot, &pci.func) == 4) {
pci_bus_parsed = true;
// reformat back to sysfs file name's and nvml's expected format
// so config file param's value format doesn't have to be as strict
std::stringstream ss;
ss << std::hex
<< std::setw(4) << std::setfill('0') << pci.domain << ":"
<< std::setw(2) << pci.bus << ":"
<< std::setw(2) << pci.slot << "."
<< std::setw(1) << pci.func;
params.pci_dev = ss.str();
pci_dev = params.pci_dev.c_str();
#ifndef NDEBUG
std::cerr << "MANGOHUD: PCI device ID: '" << pci_dev << "'\n";
#endif
} else {
std::cerr << "MANGOHUD: Failed to parse PCI device ID: '" << pci_dev << "'\n";
std::cerr << "MANGOHUD: Specify it as 'domain:bus:slot.func'\n";
}
}
// NVIDIA or Intel but maybe has Optimus
if (vendorID == 0x8086
|| vendorID == 0x10de) {
bool nvSuccess = (checkNVML(pci_dev) && getNVMLInfo());
#ifdef HAVE_XNVCTRL
if (!nvSuccess)
nvSuccess = checkXNVCtrl();
#endif
if ((params.enabled[OVERLAY_PARAM_ENABLED_gpu_stats] = nvSuccess)) {
vendorID = 0x10de;
}
}
if (vendorID == 0x8086 || vendorID == 0x1002
|| gpu.find("Radeon") != std::string::npos
|| gpu.find("AMD") != std::string::npos) {
string path;
string drm = "/sys/class/drm/";
auto dirs = ls(drm.c_str(), "card");
for (auto& dir : dirs) {
path = drm + dir;
#ifndef NDEBUG
std::cerr << "amdgpu path check: " << path << "/device/vendor" << std::endl;
#endif
string line = read_line(path + "/device/vendor");
trim(line);
if (line != "0x1002" || !file_exists(path + "/device/gpu_busy_percent"))
continue;
path += "/device";
if (pci_bus_parsed && pci_dev) {
string pci_device = readlink(path.c_str());
#ifndef NDEBUG
std::cerr << "PCI device symlink: " << pci_device << "\n";
#endif
if (!ends_with(pci_device, pci_dev)) {
std::cerr << "MANGOHUD: skipping GPU, no PCI ID match\n";
continue;
}
}
#ifndef NDEBUG
std::cerr << "using amdgpu path: " << path << std::endl;
#endif
if (!amdGpuFile)
amdGpuFile = fopen((path + "/gpu_busy_percent").c_str(), "r");
if (!amdGpuVramTotalFile)
amdGpuVramTotalFile = fopen((path + "/mem_info_vram_total").c_str(), "r");
if (!amdGpuVramUsedFile)
amdGpuVramUsedFile = fopen((path + "/mem_info_vram_used").c_str(), "r");
path += "/hwmon/";
string tempFolder;
if (find_folder(path, "hwmon", tempFolder)) {
if (!amdGpuCoreClockFile)
amdGpuCoreClockFile = fopen((path + tempFolder + "/freq1_input").c_str(), "r");
if (!amdGpuMemoryClockFile)
amdGpuMemoryClockFile = fopen((path + tempFolder + "/freq2_input").c_str(), "r");
if (!amdTempFile)
amdTempFile = fopen((path + tempFolder + "/temp1_input").c_str(), "r");
params.enabled[OVERLAY_PARAM_ENABLED_gpu_stats] = true;
vendorID = 0x1002;
break;
}
}
// don't bother then
if (!amdGpuFile && !amdTempFile && !amdGpuVramTotalFile && !amdGpuVramUsedFile) {
params.enabled[OVERLAY_PARAM_ENABLED_gpu_stats] = false;
}
}
}
void init_system_info(){
const char* ld_preload = getenv("LD_PRELOAD");
if (ld_preload)
unsetenv("LD_PRELOAD");
ram = exec("cat /proc/meminfo | grep 'MemTotal' | awk '{print $2}'");
trim(ram);
cpu = exec("cat /proc/cpuinfo | grep 'model name' | tail -n1 | sed 's/^.*: //' | sed 's/([^)]*)/()/g' | tr -d '(/)'");
trim(cpu);
kernel = exec("uname -r");
trim(kernel);
os = exec("cat /etc/*-release | grep 'PRETTY_NAME' | cut -d '=' -f 2-");
os.erase(remove(os.begin(), os.end(), '\"' ), os.end());
trim(os);
gpu = exec("lspci | grep VGA | head -n1 | awk -vRS=']' -vFS='[' '{print $2}' | sed '/^$/d' | tail -n1");
trim(gpu);
driver = exec("glxinfo | grep 'OpenGL version' | sed 's/^.*: //' | cut -d' ' --output-delimiter=$'\n' -f1- | grep -v '(' | grep -v ')' | tr '\n' ' ' | cut -c 1-");
trim(driver);
//driver = itox(device_data->properties.driverVersion);
if (ld_preload)
setenv("LD_PRELOAD", ld_preload, 1);
#ifndef NDEBUG
std::cout << "Ram:" << ram << "\n"
<< "Cpu:" << cpu << "\n"
<< "Kernel:" << kernel << "\n"
<< "Os:" << os << "\n"
<< "Gpu:" << gpu << "\n"
<< "Driver:" << driver << std::endl;
#endif
if (!log_period_env || !try_stoi(log_period, log_period_env))
log_period = 100;
}
void check_keybinds(struct overlay_params& params){
bool pressed = false; // FIXME just a placeholder until wayland support
uint64_t now = os_time_get(); /* us */
elapsedF2 = (double)(now - last_f2_press);
elapsedF12 = (double)(now - last_f12_press);
elapsedReloadCfg = (double)(now - reload_cfg_press);
if (elapsedF2 >= 500000 && !params.output_file.empty()){
#ifdef HAVE_X11
pressed = key_is_pressed(params.toggle_logging);
#else
pressed = false;
#endif
if (pressed){
last_f2_press = now;
log_start = now;
loggingOn = !loggingOn;
if (loggingOn && log_period != 0)
std::thread(logging, &params).detach();
}
}
if (elapsedF12 >= 500000){
#ifdef HAVE_X11
pressed = key_is_pressed(params.toggle_hud);
#else
pressed = false;
#endif
if (pressed){
last_f12_press = now;
params.no_display = !params.no_display;
}
}
if (elapsedReloadCfg >= 500000){
#ifdef HAVE_X11
pressed = key_is_pressed(params.reload_cfg);
#else
pressed = false;
#endif
if (pressed){
parse_overlay_config(&params, getenv("MANGOHUD_CONFIG"));
reload_cfg_press = now;
}
}
}
void update_hud_info(struct swapchain_stats& sw_stats, struct overlay_params& params, uint32_t vendorID){
uint32_t f_idx = sw_stats.n_frames % ARRAY_SIZE(sw_stats.frames_stats);
uint64_t now = os_time_get(); /* us */
double elapsed = (double)(now - sw_stats.last_fps_update); /* us */
fps = 1000000.0f * sw_stats.n_frames_since_update / elapsed;
if (sw_stats.last_present_time) {
sw_stats.frames_stats[f_idx].stats[OVERLAY_PLOTS_frame_timing] =
now - sw_stats.last_present_time;
}
if (sw_stats.last_fps_update) {
if (elapsed >= params.fps_sampling_period) {
if (params.enabled[OVERLAY_PARAM_ENABLED_cpu_stats]) {
cpuStats.UpdateCPUData();
sw_stats.total_cpu = cpuStats.GetCPUDataTotal().percent;
if (params.enabled[OVERLAY_PARAM_ENABLED_core_load])
cpuStats.UpdateCoreMhz();
if (params.enabled[OVERLAY_PARAM_ENABLED_cpu_temp])
cpuStats.UpdateCpuTemp();
}
if (params.enabled[OVERLAY_PARAM_ENABLED_gpu_stats]) {
if (vendorID == 0x1002)
std::thread(getAmdGpuUsage).detach();
if (vendorID == 0x10de)
std::thread(getNvidiaGpuInfo).detach();
}
// get ram usage/max
if (params.enabled[OVERLAY_PARAM_ENABLED_ram])
std::thread(update_meminfo).detach();
if (params.enabled[OVERLAY_PARAM_ENABLED_io_read] || params.enabled[OVERLAY_PARAM_ENABLED_io_write])
std::thread(getIoStats, &sw_stats.io).detach();
gpuLoadLog = gpu_info.load;
cpuLoadLog = sw_stats.total_cpu;
sw_stats.fps = fps;
if (params.enabled[OVERLAY_PARAM_ENABLED_time]) {
std::time_t t = std::time(nullptr);
std::stringstream time;
time << std::put_time(std::localtime(&t), params.time_format.c_str());
sw_stats.time = time.str();
}
sw_stats.n_frames_since_update = 0;
sw_stats.last_fps_update = now;
}
} else {
sw_stats.last_fps_update = now;
}
sw_stats.last_present_time = now;
sw_stats.n_frames++;
sw_stats.n_frames_since_update++;
}
static void snapshot_swapchain_frame(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
update_hud_info(data->sw_stats, instance_data->params, device_data->properties.vendorID);
check_keybinds(instance_data->params);
// not currently used
// if (instance_data->params.control >= 0) {
// control_client_check(device_data);
// process_control_socket(instance_data);
// }
}
static float get_time_stat(void *_data, int _idx)
{
struct swapchain_stats *data = (struct swapchain_stats *) _data;
if ((ARRAY_SIZE(data->frames_stats) - _idx) > data->n_frames)
return 0.0f;
int idx = ARRAY_SIZE(data->frames_stats) +
data->n_frames < ARRAY_SIZE(data->frames_stats) ?
_idx - data->n_frames :
_idx + data->n_frames;
idx %= ARRAY_SIZE(data->frames_stats);
/* Time stats are in us. */
return data->frames_stats[idx].stats[data->stat_selector] / data->time_dividor;
}
void position_layer(struct overlay_params& params, ImVec2 window_size)
{
unsigned width = ImGui::GetIO().DisplaySize.x;
unsigned height = ImGui::GetIO().DisplaySize.y;
float margin = 10.0f;
if (params.offset_x > 0 || params.offset_y > 0)
margin = 0.0f;
ImGui::SetNextWindowBgAlpha(params.background_alpha);
ImGui::SetNextWindowSize(window_size, ImGuiCond_Always);
ImGui::PushStyleVar(ImGuiStyleVar_WindowBorderSize, 0.0f);
ImGui::PushStyleVar(ImGuiStyleVar_ItemSpacing, ImVec2(8,-3));
ImGui::PushStyleVar(ImGuiStyleVar_Alpha, params.alpha);
switch (params.position) {
case LAYER_POSITION_TOP_LEFT:
ImGui::SetNextWindowPos(ImVec2(margin + params.offset_x, margin + params.offset_y), ImGuiCond_Always);
break;
case LAYER_POSITION_TOP_RIGHT:
ImGui::SetNextWindowPos(ImVec2(width - window_size.x - margin + params.offset_x, margin + params.offset_y),
ImGuiCond_Always);
break;
case LAYER_POSITION_BOTTOM_LEFT:
ImGui::SetNextWindowPos(ImVec2(margin + params.offset_x, height - window_size.y - margin + params.offset_y),
ImGuiCond_Always);
break;
case LAYER_POSITION_BOTTOM_RIGHT:
ImGui::SetNextWindowPos(ImVec2(width - window_size.x - margin + params.offset_x,
height - window_size.y - margin + params.offset_y),
ImGuiCond_Always);
break;
}
}
static void right_aligned_text(float off_x, const char *fmt, ...)
{
ImVec2 pos = ImGui::GetCursorPos();
char buffer[32] {};
va_list args;
va_start(args, fmt);
vsnprintf(buffer, sizeof(buffer), fmt, args);
va_end(args);
ImVec2 sz = ImGui::CalcTextSize(buffer);
ImGui::SetCursorPosX(pos.x + off_x - sz.x);
ImGui::Text("%s", buffer);
}
float get_ticker_limited_pos(float pos, float tw, float& left_limit, float& right_limit)
{
float cw = ImGui::GetContentRegionAvailWidth();
float new_pos_x = ImGui::GetCursorPosX();
left_limit = cw - tw + new_pos_x;
right_limit = new_pos_x;
if (cw < tw) {
new_pos_x += pos;
// acts as a delay before it starts scrolling again
if (new_pos_x < left_limit)
return left_limit;
else if (new_pos_x > right_limit)
return right_limit;
else
return new_pos_x;
}
return new_pos_x;
}
#ifdef HAVE_DBUS
void render_mpris_metadata(swapchain_stats& data, metadata& meta, uint64_t frame_timing)
{
scoped_lock lk(meta.mutex);
if (meta.valid) {
ImGui::PushStyleVar(ImGuiStyleVar_ItemSpacing, ImVec2(8,0));
ImGui::Dummy(ImVec2(0.0f, 20.0f));
ImGui::PushFont(data.font1);
if (meta.ticker.needs_recalc) {
meta.ticker.tw0 = ImGui::CalcTextSize(meta.title.c_str()).x;
meta.ticker.tw1 = ImGui::CalcTextSize(meta.artists.c_str()).x;
meta.ticker.tw2 = ImGui::CalcTextSize(meta.album.c_str()).x;
meta.ticker.longest = std::max(std::max(
meta.ticker.tw0,
meta.ticker.tw1),
meta.ticker.tw2);
meta.ticker.needs_recalc = false;
}
float new_pos, left_limit = 0, right_limit = 0;
get_ticker_limited_pos(meta.ticker.pos, meta.ticker.longest, left_limit, right_limit);
if (meta.ticker.pos < left_limit - g_overflow * .5f) {
meta.ticker.dir = -1;
meta.ticker.pos = (left_limit - g_overflow * .5f) + 1.f /* random */;
} else if (meta.ticker.pos > right_limit + g_overflow) {
meta.ticker.dir = 1;
meta.ticker.pos = (right_limit + g_overflow) - 1.f /* random */;
}
meta.ticker.pos -= .5f * (frame_timing / 16666.7f) * meta.ticker.dir;
new_pos = get_ticker_limited_pos(meta.ticker.pos, meta.ticker.tw0, left_limit, right_limit);
ImGui::SetCursorPosX(new_pos);
ImGui::Text("%s", meta.title.c_str());
new_pos = get_ticker_limited_pos(meta.ticker.pos, meta.ticker.tw1, left_limit, right_limit);
ImGui::SetCursorPosX(new_pos);
ImGui::Text("%s", meta.artists.c_str());
//ImGui::NewLine();
if (!meta.album.empty()) {
new_pos = get_ticker_limited_pos(meta.ticker.pos, meta.ticker.tw2, left_limit, right_limit);
ImGui::SetCursorPosX(new_pos);
ImGui::Text("%s", meta.album.c_str());
}
ImGui::PopFont();
ImGui::PopStyleVar();
}
}
#endif
void render_imgui(swapchain_stats& data, struct overlay_params& params, ImVec2& window_size, bool is_vulkan)
{
uint32_t f_idx = (data.n_frames - 1) % ARRAY_SIZE(data.frames_stats);
uint64_t frame_timing = data.frames_stats[f_idx].stats[OVERLAY_PLOTS_frame_timing];
static float char_width = ImGui::CalcTextSize("A").x;
window_size = ImVec2(params.width, params.height);
unsigned width = ImGui::GetIO().DisplaySize.x;
unsigned height = ImGui::GetIO().DisplaySize.y;
if (!params.no_display){
ImGui::Begin("Main", &open, ImGuiWindowFlags_NoDecoration);
if (params.enabled[OVERLAY_PARAM_ENABLED_version])
ImGui::Text("%s", MANGOHUD_VERSION);
ImGui::Dummy(ImVec2(0, 8.0f));
if (params.enabled[OVERLAY_PARAM_ENABLED_time]){
ImGui::TextColored(ImVec4(1.0f, 1.0f, 1.0f, 1.00f), "%s", data.time.c_str());
}
ImGui::BeginTable("hud", params.tableCols);
if (params.enabled[OVERLAY_PARAM_ENABLED_gpu_stats]){
ImGui::TableNextRow();
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.gpu_color), "GPU");
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%i", gpu_info.load);
ImGui::SameLine(0, 1.0f);
ImGui::Text("%%");
// ImGui::SameLine(150);
// ImGui::Text("%s", "%");
if (params.enabled[OVERLAY_PARAM_ENABLED_gpu_temp]){
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%i", gpu_info.temp);
ImGui::SameLine(0, 1.0f);
ImGui::Text("°C");
}
if (params.enabled[OVERLAY_PARAM_ENABLED_gpu_core_clock]){
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%i", gpu_info.CoreClock);
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("MHz");
ImGui::PopFont();
}
}
if(params.enabled[OVERLAY_PARAM_ENABLED_cpu_stats]){
ImGui::TableNextRow();
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.cpu_color), "CPU");
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%d", data.total_cpu);
ImGui::SameLine(0, 1.0f);
ImGui::Text("%%");
// ImGui::SameLine(150);
// ImGui::Text("%s", "%");
if (params.enabled[OVERLAY_PARAM_ENABLED_cpu_temp]){
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%i", cpuStats.GetCPUDataTotal().temp);
ImGui::SameLine(0, 1.0f);
ImGui::Text("°C");
}
}
if (params.enabled[OVERLAY_PARAM_ENABLED_core_load]){
int i = 0;
for (const CPUData &cpuData : cpuStats.GetCPUData())
{
ImGui::TableNextRow();
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.cpu_color), "CPU");
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(data.font1);
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.cpu_color),"%i", i);
ImGui::PopFont();
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%i", int(cpuData.percent));
ImGui::SameLine(0, 1.0f);
ImGui::Text("%%");
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%i", cpuData.mhz);
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("MHz");
ImGui::PopFont();
i++;
}
}
if (params.enabled[OVERLAY_PARAM_ENABLED_io_read] || params.enabled[OVERLAY_PARAM_ENABLED_io_write]){
auto sampling = params.fps_sampling_period;
ImGui::TableNextRow();
if (params.enabled[OVERLAY_PARAM_ENABLED_io_read] && !params.enabled[OVERLAY_PARAM_ENABLED_io_write])
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.io_color), "IO RD");
if (params.enabled[OVERLAY_PARAM_ENABLED_io_write] && !params.enabled[OVERLAY_PARAM_ENABLED_io_read])
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.io_color), "IO RW");
if (params.enabled[OVERLAY_PARAM_ENABLED_io_read] && params.enabled[OVERLAY_PARAM_ENABLED_io_write])
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.io_color), "IO RD/RW");
if (params.enabled[OVERLAY_PARAM_ENABLED_io_read]){
ImGui::TableNextCell();
float val = data.io.diff.read * 1000000 / sampling;
right_aligned_text(char_width * 4, val < 100 ? "%.2f" : "%.f", val);
ImGui::SameLine(0,1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("MiB/s");
ImGui::PopFont();
}
if (params.enabled[OVERLAY_PARAM_ENABLED_io_write]){
ImGui::TableNextCell();
float val = data.io.diff.write * 1000000 / sampling;
right_aligned_text(char_width * 4, val < 100 ? "%.2f" : "%.f", val);
ImGui::SameLine(0,1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("MiB/s");
ImGui::PopFont();
}
}
if (params.enabled[OVERLAY_PARAM_ENABLED_vram]){
ImGui::TableNextRow();
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.vram_color), "VRAM");
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%.2f", gpu_info.memoryUsed);
ImGui::SameLine(0,1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("GiB");
ImGui::PopFont();
if (params.enabled[OVERLAY_PARAM_ENABLED_gpu_mem_clock]){
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%i", gpu_info.MemClock);
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("MHz");
ImGui::PopFont();
}
}
if (params.enabled[OVERLAY_PARAM_ENABLED_ram]){
ImGui::TableNextRow();
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.ram_color), "RAM");
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%.2f", memused);
ImGui::SameLine(0,1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("GiB");
ImGui::PopFont();
}
if (params.enabled[OVERLAY_PARAM_ENABLED_fps]){
ImGui::TableNextRow();
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.engine_color), "%s", is_vulkan ? data.engineName.c_str() : "OpenGL");
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%.0f", data.fps);
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("FPS");
ImGui::PopFont();
ImGui::TableNextCell();
right_aligned_text(char_width * 4, "%.1f", 1000 / data.fps);
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("ms");
ImGui::PopFont();
}
ImGui::EndTable();
if (params.enabled[OVERLAY_PARAM_ENABLED_fps]){
ImGui::PushFont(data.font1);
ImGui::Dummy(ImVec2(0, 8.0f));
auto engine_color = ImGui::ColorConvertU32ToFloat4(params.engine_color);
if (is_vulkan) {
if ((data.engineName == "DXVK" || data.engineName == "VKD3D")){
ImGui::TextColored(engine_color,
"%s/%d.%d.%d", data.engineVersion.c_str(),
data.version_vk.major,
data.version_vk.minor,
data.version_vk.patch);
} else {
ImGui::TextColored(engine_color,
"%d.%d.%d",
data.version_vk.major,
data.version_vk.minor,
data.version_vk.patch);
}
} else {
ImGui::TextColored(engine_color,
"%d.%d%s", data.version_gl.major, data.version_gl.minor,
data.version_gl.is_gles ? " ES" : "");
}
ImGui::SameLine();
ImGui::TextColored(engine_color,
"/ %s", data.deviceName.c_str());
if (params.enabled[OVERLAY_PARAM_ENABLED_arch]){
ImGui::Dummy(ImVec2(0.0,5.0f));
ImGui::TextColored(engine_color, "%s", "" MANGOHUD_ARCH);
}
ImGui::PopFont();
}
if (loggingOn && log_period == 0){
uint64_t now = os_time_get();
elapsedLog = (double)(now - log_start);
if ((elapsedLog) >= params.log_duration * 1000000)
loggingOn = false;
out << fps << "," << cpuLoadLog << "," << gpuLoadLog << "," << (now - log_start) << endl;
}
if (params.enabled[OVERLAY_PARAM_ENABLED_frame_timing]){
ImGui::Dummy(ImVec2(0.0f, params.font_size / 2));
ImGui::PushFont(data.font1);
ImGui::TextColored(ImGui::ColorConvertU32ToFloat4(params.engine_color), "%s", "Frametime");
ImGui::PopFont();
char hash[40];
snprintf(hash, sizeof(hash), "##%s", overlay_param_names[OVERLAY_PARAM_ENABLED_frame_timing]);
data.stat_selector = OVERLAY_PLOTS_frame_timing;
data.time_dividor = 1000.0f;
ImGui::PushStyleColor(ImGuiCol_FrameBg, ImVec4(0.0f, 0.0f, 0.0f, 0.0f));
double min_time = 0.0f;
double max_time = 50.0f;
ImGui::PlotLines(hash, get_time_stat, &data,
ARRAY_SIZE(data.frames_stats), 0,
NULL, min_time, max_time,
ImVec2(ImGui::GetContentRegionAvailWidth() - params.font_size * 2.2, 50));
ImGui::PopStyleColor();
}
if (params.enabled[OVERLAY_PARAM_ENABLED_frame_timing]){
ImGui::SameLine(0,1.0f);
ImGui::PushFont(data.font1);
ImGui::Text("%.1f ms", 1000 / data.fps); //frame_timing / 1000.f);
ImGui::PopFont();
}
#ifdef HAVE_DBUS
render_mpris_metadata(data, spotify, frame_timing);
render_mpris_metadata(data, generic_mpris, frame_timing);
#endif
window_size = ImVec2(window_size.x, ImGui::GetCursorPosY() + 10.0f);
ImGui::End();
if(loggingOn){
ImGui::SetNextWindowBgAlpha(0.0);
ImGui::SetNextWindowSize(ImVec2(params.font_size * 13, params.font_size * 13), ImGuiCond_Always);
ImGui::SetNextWindowPos(ImVec2(width - params.font_size * 13,
0),
ImGuiCond_Always);
ImGui::Begin("Logging", &open, ImGuiWindowFlags_NoDecoration);
ImGui::Text("Logging...");
ImGui::Text("Elapsed: %isec", int((elapsedLog) / 1000000));
ImGui::End();
}
if (params.enabled[OVERLAY_PARAM_ENABLED_crosshair]){
ImGui::SetNextWindowBgAlpha(0.0);
ImGui::SetNextWindowSize(ImVec2(width, height), ImGuiCond_Always);
ImGui::SetNextWindowPos(ImVec2(0, 0), ImGuiCond_Always);
ImGui::Begin("Logging", &open, ImGuiWindowFlags_NoDecoration);
ImVec2 horiz = ImVec2(width / 2 - (params.crosshair_size / 2), height / 2);
ImVec2 vert = ImVec2(width / 2, height / 2 - (params.crosshair_size / 2));
ImGui::GetWindowDrawList()->AddLine(horiz,
ImVec2(horiz.x + params.crosshair_size, horiz.y + 0),
params.crosshair_color, 2.0f);
ImGui::GetWindowDrawList()->AddLine(vert,
ImVec2(vert.x + 0, vert.y + params.crosshair_size),
params.crosshair_color, 2.0f);
ImGui::End();
}
}
}
static void compute_swapchain_display(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
ImGui::SetCurrentContext(data->imgui_context);
ImGui::NewFrame();
{
scoped_lock lk(instance_data->notifier.mutex);
position_layer(instance_data->params, data->window_size);
render_imgui(data->sw_stats, instance_data->params, data->window_size, true);
}
ImGui::PopStyleVar(3);
ImGui::EndFrame();
ImGui::Render();
}
static uint32_t vk_memory_type(struct device_data *data,
VkMemoryPropertyFlags properties,
uint32_t type_bits)
{
VkPhysicalDeviceMemoryProperties prop;
data->instance->vtable.GetPhysicalDeviceMemoryProperties(data->physical_device, &prop);
for (uint32_t i = 0; i < prop.memoryTypeCount; i++)
if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1<<i))
return i;
return 0xFFFFFFFF; // Unable to find memoryType
}
static void ensure_swapchain_fonts(struct swapchain_data *data,
VkCommandBuffer command_buffer)
{
if (data->font_uploaded)
return;
data->font_uploaded = true;
struct device_data *device_data = data->device;
ImGuiIO& io = ImGui::GetIO();
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
size_t upload_size = width * height * 4 * sizeof(char);
/* Upload buffer */
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = upload_size;
buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK(device_data->vtable.CreateBuffer(device_data->device, &buffer_info,
NULL, &data->upload_font_buffer));
VkMemoryRequirements upload_buffer_req;
device_data->vtable.GetBufferMemoryRequirements(device_data->device,
data->upload_font_buffer,
&upload_buffer_req);
VkMemoryAllocateInfo upload_alloc_info = {};
upload_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
upload_alloc_info.allocationSize = upload_buffer_req.size;
upload_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
upload_buffer_req.memoryTypeBits);
VK_CHECK(device_data->vtable.AllocateMemory(device_data->device,
&upload_alloc_info,
NULL,
&data->upload_font_buffer_mem));
VK_CHECK(device_data->vtable.BindBufferMemory(device_data->device,
data->upload_font_buffer,
data->upload_font_buffer_mem, 0));
/* Upload to Buffer */
char* map = NULL;
VK_CHECK(device_data->vtable.MapMemory(device_data->device,
data->upload_font_buffer_mem,
0, upload_size, 0, (void**)(&map)));
memcpy(map, pixels, upload_size);
VkMappedMemoryRange range[1] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = data->upload_font_buffer_mem;
range[0].size = upload_size;
VK_CHECK(device_data->vtable.FlushMappedMemoryRanges(device_data->device, 1, range));
device_data->vtable.UnmapMemory(device_data->device,
data->upload_font_buffer_mem);
/* Copy buffer to image */
VkImageMemoryBarrier copy_barrier[1] = {};
copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].image = data->font_image;
copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_barrier[0].subresourceRange.levelCount = 1;
copy_barrier[0].subresourceRange.layerCount = 1;
device_data->vtable.CmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_HOST_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL,
1, copy_barrier);
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = width;
region.imageExtent.height = height;
region.imageExtent.depth = 1;
device_data->vtable.CmdCopyBufferToImage(command_buffer,
data->upload_font_buffer,
data->font_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &region);
VkImageMemoryBarrier use_barrier[1] = {};
use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].image = data->font_image;
use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
use_barrier[0].subresourceRange.levelCount = 1;
use_barrier[0].subresourceRange.layerCount = 1;
device_data->vtable.CmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, NULL,
0, NULL,
1, use_barrier);
/* Store our identifier */
io.Fonts->TexID = (ImTextureID)(intptr_t)data->font_image;
}
static void CreateOrResizeBuffer(struct device_data *data,
VkBuffer *buffer,
VkDeviceMemory *buffer_memory,
VkDeviceSize *buffer_size,
size_t new_size, VkBufferUsageFlagBits usage)
{
if (*buffer != VK_NULL_HANDLE)
data->vtable.DestroyBuffer(data->device, *buffer, NULL);
if (*buffer_memory)
data->vtable.FreeMemory(data->device, *buffer_memory, NULL);
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = new_size;
buffer_info.usage = usage;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK(data->vtable.CreateBuffer(data->device, &buffer_info, NULL, buffer));
VkMemoryRequirements req;
data->vtable.GetBufferMemoryRequirements(data->device, *buffer, &req);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = req.size;
alloc_info.memoryTypeIndex =
vk_memory_type(data, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
VK_CHECK(data->vtable.AllocateMemory(data->device, &alloc_info, NULL, buffer_memory));
VK_CHECK(data->vtable.BindBufferMemory(data->device, *buffer, *buffer_memory, 0));
*buffer_size = new_size;
}
static struct overlay_draw *render_swapchain_display(struct swapchain_data *data,
struct queue_data *present_queue,
const VkSemaphore *wait_semaphores,
unsigned n_wait_semaphores,
unsigned image_index)
{
ImDrawData* draw_data = ImGui::GetDrawData();
if (draw_data->TotalVtxCount == 0)
return NULL;
struct device_data *device_data = data->device;
struct overlay_draw *draw = get_overlay_draw(data);
device_data->vtable.ResetCommandBuffer(draw->command_buffer, 0);
VkRenderPassBeginInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
render_pass_info.renderPass = data->render_pass;
render_pass_info.framebuffer = data->framebuffers[image_index];
render_pass_info.renderArea.extent.width = data->width;
render_pass_info.renderArea.extent.height = data->height;
VkCommandBufferBeginInfo buffer_begin_info = {};
buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
device_data->vtable.BeginCommandBuffer(draw->command_buffer, &buffer_begin_info);
ensure_swapchain_fonts(data, draw->command_buffer);
/* Bounce the image to display back to color attachment layout for
* rendering on top of it.
*/
VkImageMemoryBarrier imb;
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = nullptr;
imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
imb.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
imb.image = data->images[image_index];
imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imb.subresourceRange.baseMipLevel = 0;
imb.subresourceRange.levelCount = 1;
imb.subresourceRange.baseArrayLayer = 0;
imb.subresourceRange.layerCount = 1;
imb.srcQueueFamilyIndex = present_queue->family_index;
imb.dstQueueFamilyIndex = device_data->graphic_queue->family_index;
device_data->vtable.CmdPipelineBarrier(draw->command_buffer,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
0, /* dependency flags */
0, nullptr, /* memory barriers */
0, nullptr, /* buffer memory barriers */
1, &imb); /* image memory barriers */
device_data->vtable.CmdBeginRenderPass(draw->command_buffer, &render_pass_info,
VK_SUBPASS_CONTENTS_INLINE);
/* Create/Resize vertex & index buffers */
size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert);
size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx);
if (draw->vertex_buffer_size < vertex_size) {
CreateOrResizeBuffer(device_data,
&draw->vertex_buffer,
&draw->vertex_buffer_mem,
&draw->vertex_buffer_size,
vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
}
if (draw->index_buffer_size < index_size) {
CreateOrResizeBuffer(device_data,
&draw->index_buffer,
&draw->index_buffer_mem,
&draw->index_buffer_size,
index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
}
/* Upload vertex & index data */
ImDrawVert* vtx_dst = NULL;
ImDrawIdx* idx_dst = NULL;
VK_CHECK(device_data->vtable.MapMemory(device_data->device, draw->vertex_buffer_mem,
0, vertex_size, 0, (void**)(&vtx_dst)));
VK_CHECK(device_data->vtable.MapMemory(device_data->device, draw->index_buffer_mem,
0, index_size, 0, (void**)(&idx_dst)));
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
vtx_dst += cmd_list->VtxBuffer.Size;
idx_dst += cmd_list->IdxBuffer.Size;
}
VkMappedMemoryRange range[2] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = draw->vertex_buffer_mem;
range[0].size = VK_WHOLE_SIZE;
range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[1].memory = draw->index_buffer_mem;
range[1].size = VK_WHOLE_SIZE;
VK_CHECK(device_data->vtable.FlushMappedMemoryRanges(device_data->device, 2, range));
device_data->vtable.UnmapMemory(device_data->device, draw->vertex_buffer_mem);
device_data->vtable.UnmapMemory(device_data->device, draw->index_buffer_mem);
/* Bind pipeline and descriptor sets */
device_data->vtable.CmdBindPipeline(draw->command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, data->pipeline);
VkDescriptorSet desc_set[1] = { data->descriptor_set };
device_data->vtable.CmdBindDescriptorSets(draw->command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
data->pipeline_layout, 0, 1, desc_set, 0, NULL);
/* Bind vertex & index buffers */
VkBuffer vertex_buffers[1] = { draw->vertex_buffer };
VkDeviceSize vertex_offset[1] = { 0 };
device_data->vtable.CmdBindVertexBuffers(draw->command_buffer, 0, 1, vertex_buffers, vertex_offset);
device_data->vtable.CmdBindIndexBuffer(draw->command_buffer, draw->index_buffer, 0, VK_INDEX_TYPE_UINT16);
/* Setup viewport */
VkViewport viewport;
viewport.x = 0;
viewport.y = 0;
viewport.width = draw_data->DisplaySize.x;
viewport.height = draw_data->DisplaySize.y;
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
device_data->vtable.CmdSetViewport(draw->command_buffer, 0, 1, &viewport);
/* Setup scale and translation through push constants :
*
* Our visible imgui space lies from draw_data->DisplayPos (top left) to
* draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin
* is typically (0,0) for single viewport apps.
*/
float scale[2];
scale[0] = 2.0f / draw_data->DisplaySize.x;
scale[1] = 2.0f / draw_data->DisplaySize.y;
float translate[2];
translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0];
translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1];
device_data->vtable.CmdPushConstants(draw->command_buffer, data->pipeline_layout,
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(float) * 0, sizeof(float) * 2, scale);
device_data->vtable.CmdPushConstants(draw->command_buffer, data->pipeline_layout,
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(float) * 2, sizeof(float) * 2, translate);
// Render the command lists:
int vtx_offset = 0;
int idx_offset = 0;
ImVec2 display_pos = draw_data->DisplayPos;
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
{
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
// Apply scissor/clipping rectangle
// FIXME: We could clamp width/height based on clamped min/max values.
VkRect2D scissor;
scissor.offset.x = (int32_t)(pcmd->ClipRect.x - display_pos.x) > 0 ? (int32_t)(pcmd->ClipRect.x - display_pos.x) : 0;
scissor.offset.y = (int32_t)(pcmd->ClipRect.y - display_pos.y) > 0 ? (int32_t)(pcmd->ClipRect.y - display_pos.y) : 0;
scissor.extent.width = (uint32_t)(pcmd->ClipRect.z - pcmd->ClipRect.x);
scissor.extent.height = (uint32_t)(pcmd->ClipRect.w - pcmd->ClipRect.y + 1); // FIXME: Why +1 here?
device_data->vtable.CmdSetScissor(draw->command_buffer, 0, 1, &scissor);
// Draw
device_data->vtable.CmdDrawIndexed(draw->command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0);
idx_offset += pcmd->ElemCount;
}
vtx_offset += cmd_list->VtxBuffer.Size;
}
device_data->vtable.CmdEndRenderPass(draw->command_buffer);
if (device_data->graphic_queue->family_index != present_queue->family_index)
{
/* Transfer the image back to the present queue family
* image layout was already changed to present by the render pass
*/
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = nullptr;
imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
imb.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
imb.image = data->images[image_index];
imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imb.subresourceRange.baseMipLevel = 0;
imb.subresourceRange.levelCount = 1;
imb.subresourceRange.baseArrayLayer = 0;
imb.subresourceRange.layerCount = 1;
imb.srcQueueFamilyIndex = device_data->graphic_queue->family_index;
imb.dstQueueFamilyIndex = present_queue->family_index;
device_data->vtable.CmdPipelineBarrier(draw->command_buffer,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
0, /* dependency flags */
0, nullptr, /* memory barriers */
0, nullptr, /* buffer memory barriers */
1, &imb); /* image memory barriers */
}
device_data->vtable.EndCommandBuffer(draw->command_buffer);
/* When presenting on a different queue than where we're drawing the
* overlay *AND* when the application does not provide a semaphore to
* vkQueuePresent, insert our own cross engine synchronization
* semaphore.
*/
if (n_wait_semaphores == 0 && device_data->graphic_queue->queue != present_queue->queue) {
VkPipelineStageFlags stages_wait = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 0;
submit_info.pWaitDstStageMask = &stages_wait;
submit_info.waitSemaphoreCount = 0;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &draw->cross_engine_semaphore;
device_data->vtable.QueueSubmit(present_queue->queue, 1, &submit_info, VK_NULL_HANDLE);
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pWaitDstStageMask = &stages_wait;
submit_info.pCommandBuffers = &draw->command_buffer;
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitSemaphores = &draw->cross_engine_semaphore;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &draw->semaphore;
device_data->vtable.QueueSubmit(device_data->graphic_queue->queue, 1, &submit_info, draw->fence);
} else {
// wait in the fragment stage until the swapchain image is ready
std::vector<VkPipelineStageFlags> stages_wait(n_wait_semaphores, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &draw->command_buffer;
submit_info.pWaitDstStageMask = stages_wait.data();
submit_info.waitSemaphoreCount = n_wait_semaphores;
submit_info.pWaitSemaphores = wait_semaphores;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &draw->semaphore;
device_data->vtable.QueueSubmit(device_data->graphic_queue->queue, 1, &submit_info, draw->fence);
}
return draw;
}
static const uint32_t overlay_vert_spv[] = {
#include "overlay.vert.spv.h"
};
static const uint32_t overlay_frag_spv[] = {
#include "overlay.frag.spv.h"
};
static void setup_swapchain_data_pipeline(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
VkShaderModule vert_module, frag_module;
/* Create shader modules */
VkShaderModuleCreateInfo vert_info = {};
vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
vert_info.codeSize = sizeof(overlay_vert_spv);
vert_info.pCode = overlay_vert_spv;
VK_CHECK(device_data->vtable.CreateShaderModule(device_data->device,
&vert_info, NULL, &vert_module));
VkShaderModuleCreateInfo frag_info = {};
frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
frag_info.codeSize = sizeof(overlay_frag_spv);
frag_info.pCode = (uint32_t*)overlay_frag_spv;
VK_CHECK(device_data->vtable.CreateShaderModule(device_data->device,
&frag_info, NULL, &frag_module));
/* Font sampler */
VkSamplerCreateInfo sampler_info = {};
sampler_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler_info.magFilter = VK_FILTER_LINEAR;
sampler_info.minFilter = VK_FILTER_LINEAR;
sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.minLod = -1000;
sampler_info.maxLod = 1000;
sampler_info.maxAnisotropy = 1.0f;
VK_CHECK(device_data->vtable.CreateSampler(device_data->device, &sampler_info,
NULL, &data->font_sampler));
/* Descriptor pool */
VkDescriptorPoolSize sampler_pool_size = {};
sampler_pool_size.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
sampler_pool_size.descriptorCount = 1;
VkDescriptorPoolCreateInfo desc_pool_info = {};
desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
desc_pool_info.maxSets = 1;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &sampler_pool_size;
VK_CHECK(device_data->vtable.CreateDescriptorPool(device_data->device,
&desc_pool_info,
NULL, &data->descriptor_pool));
/* Descriptor layout */
VkSampler sampler[1] = { data->font_sampler };
VkDescriptorSetLayoutBinding binding[1] = {};
binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
binding[0].descriptorCount = 1;
binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
binding[0].pImmutableSamplers = sampler;
VkDescriptorSetLayoutCreateInfo set_layout_info = {};
set_layout_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
set_layout_info.bindingCount = 1;
set_layout_info.pBindings = binding;
VK_CHECK(device_data->vtable.CreateDescriptorSetLayout(device_data->device,
&set_layout_info,
NULL, &data->descriptor_layout));
/* Descriptor set */
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorPool = data->descriptor_pool;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &data->descriptor_layout;
VK_CHECK(device_data->vtable.AllocateDescriptorSets(device_data->device,
&alloc_info,
&data->descriptor_set));
/* Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full
* 3d projection matrix
*/
VkPushConstantRange push_constants[1] = {};
push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
push_constants[0].offset = sizeof(float) * 0;
push_constants[0].size = sizeof(float) * 4;
VkPipelineLayoutCreateInfo layout_info = {};
layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layout_info.setLayoutCount = 1;
layout_info.pSetLayouts = &data->descriptor_layout;
layout_info.pushConstantRangeCount = 1;
layout_info.pPushConstantRanges = push_constants;
VK_CHECK(device_data->vtable.CreatePipelineLayout(device_data->device,
&layout_info,
NULL, &data->pipeline_layout));
VkPipelineShaderStageCreateInfo stage[2] = {};
stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
stage[0].module = vert_module;
stage[0].pName = "main";
stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
stage[1].module = frag_module;
stage[1].pName = "main";
VkVertexInputBindingDescription binding_desc[1] = {};
binding_desc[0].stride = sizeof(ImDrawVert);
binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
VkVertexInputAttributeDescription attribute_desc[3] = {};
attribute_desc[0].location = 0;
attribute_desc[0].binding = binding_desc[0].binding;
attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos);
attribute_desc[1].location = 1;
attribute_desc[1].binding = binding_desc[0].binding;
attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv);
attribute_desc[2].location = 2;
attribute_desc[2].binding = binding_desc[0].binding;
attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM;
attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col);
VkPipelineVertexInputStateCreateInfo vertex_info = {};
vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertex_info.vertexBindingDescriptionCount = 1;
vertex_info.pVertexBindingDescriptions = binding_desc;
vertex_info.vertexAttributeDescriptionCount = 3;
vertex_info.pVertexAttributeDescriptions = attribute_desc;
VkPipelineInputAssemblyStateCreateInfo ia_info = {};
ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkPipelineViewportStateCreateInfo viewport_info = {};
viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport_info.viewportCount = 1;
viewport_info.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo raster_info = {};
raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
raster_info.polygonMode = VK_POLYGON_MODE_FILL;
raster_info.cullMode = VK_CULL_MODE_NONE;
raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
raster_info.lineWidth = 1.0f;
VkPipelineMultisampleStateCreateInfo ms_info = {};
ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineColorBlendAttachmentState color_attachment[1] = {};
color_attachment[0].blendEnable = VK_TRUE;
color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
VkPipelineDepthStencilStateCreateInfo depth_info = {};
depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
VkPipelineColorBlendStateCreateInfo blend_info = {};
blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blend_info.attachmentCount = 1;
blend_info.pAttachments = color_attachment;
VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamic_state = {};
dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states);
dynamic_state.pDynamicStates = dynamic_states;
VkGraphicsPipelineCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.flags = 0;
info.stageCount = 2;
info.pStages = stage;
info.pVertexInputState = &vertex_info;
info.pInputAssemblyState = &ia_info;
info.pViewportState = &viewport_info;
info.pRasterizationState = &raster_info;
info.pMultisampleState = &ms_info;
info.pDepthStencilState = &depth_info;
info.pColorBlendState = &blend_info;
info.pDynamicState = &dynamic_state;
info.layout = data->pipeline_layout;
info.renderPass = data->render_pass;
VK_CHECK(
device_data->vtable.CreateGraphicsPipelines(device_data->device, VK_NULL_HANDLE,
1, &info,
NULL, &data->pipeline));
device_data->vtable.DestroyShaderModule(device_data->device, vert_module, NULL);
device_data->vtable.DestroyShaderModule(device_data->device, frag_module, NULL);
ImGuiIO& io = ImGui::GetIO();
int font_size = device_data->instance->params.font_size;
if (!font_size)
font_size = 24;
// ImGui takes ownership of the data, no need to free it
if (!device_data->instance->params.font_file.empty() && file_exists(device_data->instance->params.font_file)) {
data->font = io.Fonts->AddFontFromFileTTF(device_data->instance->params.font_file.c_str(), font_size);
data->sw_stats.font1 = io.Fonts->AddFontFromFileTTF(device_data->instance->params.font_file.c_str(), font_size * 0.55f);
} else {
ImFontConfig font_cfg = ImFontConfig();
const char* ttf_compressed_base85 = GetDefaultCompressedFontDataTTFBase85();
const ImWchar* glyph_ranges = io.Fonts->GetGlyphRangesDefault();
data->font = io.Fonts->AddFontFromMemoryCompressedBase85TTF(ttf_compressed_base85, font_size, &font_cfg, glyph_ranges);
data->sw_stats.font1 = io.Fonts->AddFontFromMemoryCompressedBase85TTF(ttf_compressed_base85, font_size * 0.55, &font_cfg, glyph_ranges);
}
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
/* Font image */
VkImageCreateInfo image_info = {};
image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_info.imageType = VK_IMAGE_TYPE_2D;
image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_info.extent.width = width;
image_info.extent.height = height;
image_info.extent.depth = 1;
image_info.mipLevels = 1;
image_info.arrayLayers = 1;
image_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK(device_data->vtable.CreateImage(device_data->device, &image_info,
NULL, &data->font_image));
VkMemoryRequirements font_image_req;
device_data->vtable.GetImageMemoryRequirements(device_data->device,
data->font_image, &font_image_req);
VkMemoryAllocateInfo image_alloc_info = {};
image_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
image_alloc_info.allocationSize = font_image_req.size;
image_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
font_image_req.memoryTypeBits);
VK_CHECK(device_data->vtable.AllocateMemory(device_data->device, &image_alloc_info,
NULL, &data->font_mem));
VK_CHECK(device_data->vtable.BindImageMemory(device_data->device,
data->font_image,
data->font_mem, 0));
/* Font image view */
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.image = data->font_image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = VK_FORMAT_R8G8B8A8_UNORM;
view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view_info.subresourceRange.levelCount = 1;
view_info.subresourceRange.layerCount = 1;
VK_CHECK(device_data->vtable.CreateImageView(device_data->device, &view_info,
NULL, &data->font_image_view));
/* Descriptor set */
VkDescriptorImageInfo desc_image[1] = {};
desc_image[0].sampler = data->font_sampler;
desc_image[0].imageView = data->font_image_view;
desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkWriteDescriptorSet write_desc[1] = {};
write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
write_desc[0].dstSet = data->descriptor_set;
write_desc[0].descriptorCount = 1;
write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
write_desc[0].pImageInfo = desc_image;
device_data->vtable.UpdateDescriptorSets(device_data->device, 1, write_desc, 0, NULL);
}
void imgui_custom_style(struct overlay_params& params){
ImGuiStyle& style = ImGui::GetStyle();
style.Colors[ImGuiCol_PlotLines] = ImGui::ColorConvertU32ToFloat4(params.frametime_color);
style.Colors[ImGuiCol_WindowBg] = ImGui::ColorConvertU32ToFloat4(params.background_color);
style.Colors[ImGuiCol_Text] = ImGui::ColorConvertU32ToFloat4(params.text_color);
style.CellPadding.y = -2;
}
static void setup_swapchain_data(struct swapchain_data *data,
const VkSwapchainCreateInfoKHR *pCreateInfo, struct overlay_params& params)
{
data->width = pCreateInfo->imageExtent.width;
data->height = pCreateInfo->imageExtent.height;
data->format = pCreateInfo->imageFormat;
data->imgui_context = ImGui::CreateContext();
ImGui::SetCurrentContext(data->imgui_context);
ImGui::GetIO().IniFilename = NULL;
ImGui::GetIO().DisplaySize = ImVec2((float)data->width, (float)data->height);
imgui_custom_style(params);
struct device_data *device_data = data->device;
/* Render pass */
VkAttachmentDescription attachment_desc = {};
attachment_desc.format = pCreateInfo->imageFormat;
attachment_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attachment_desc.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachment_desc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment_desc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment_desc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachment_desc.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachment_desc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference color_attachment = {};
color_attachment.attachment = 0;
color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_attachment;
VkSubpassDependency dependency = {};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.srcAccessMask = 0;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkRenderPassCreateInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
render_pass_info.attachmentCount = 1;
render_pass_info.pAttachments = &attachment_desc;
render_pass_info.subpassCount = 1;
render_pass_info.pSubpasses = &subpass;
render_pass_info.dependencyCount = 1;
render_pass_info.pDependencies = &dependency;
VK_CHECK(device_data->vtable.CreateRenderPass(device_data->device,
&render_pass_info,
NULL, &data->render_pass));
setup_swapchain_data_pipeline(data);
uint32_t n_images = 0;
VK_CHECK(device_data->vtable.GetSwapchainImagesKHR(device_data->device,
data->swapchain,
&n_images,
NULL));
data->images.resize(n_images);
data->image_views.resize(n_images);
data->framebuffers.resize(n_images);
VK_CHECK(device_data->vtable.GetSwapchainImagesKHR(device_data->device,
data->swapchain,
&n_images,
data->images.data()));
if (n_images != data->images.size()) {
data->images.resize(n_images);
data->image_views.resize(n_images);
data->framebuffers.resize(n_images);
}
/* Image views */
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = pCreateInfo->imageFormat;
view_info.components.r = VK_COMPONENT_SWIZZLE_R;
view_info.components.g = VK_COMPONENT_SWIZZLE_G;
view_info.components.b = VK_COMPONENT_SWIZZLE_B;
view_info.components.a = VK_COMPONENT_SWIZZLE_A;
view_info.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
for (size_t i = 0; i < data->images.size(); i++) {
view_info.image = data->images[i];
VK_CHECK(device_data->vtable.CreateImageView(device_data->device,
&view_info, NULL,
&data->image_views[i]));
}
/* Framebuffers */
VkImageView attachment[1];
VkFramebufferCreateInfo fb_info = {};
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.renderPass = data->render_pass;
fb_info.attachmentCount = 1;
fb_info.pAttachments = attachment;
fb_info.width = data->width;
fb_info.height = data->height;
fb_info.layers = 1;
for (size_t i = 0; i < data->image_views.size(); i++) {
attachment[0] = data->image_views[i];
VK_CHECK(device_data->vtable.CreateFramebuffer(device_data->device, &fb_info,
NULL, &data->framebuffers[i]));
}
/* Command buffer pool */
VkCommandPoolCreateInfo cmd_buffer_pool_info = {};
cmd_buffer_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmd_buffer_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
cmd_buffer_pool_info.queueFamilyIndex = device_data->graphic_queue->family_index;
VK_CHECK(device_data->vtable.CreateCommandPool(device_data->device,
&cmd_buffer_pool_info,
NULL, &data->command_pool));
}
static void shutdown_swapchain_data(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
for (auto draw : data->draws) {
device_data->vtable.DestroySemaphore(device_data->device, draw->cross_engine_semaphore, NULL);
device_data->vtable.DestroySemaphore(device_data->device, draw->semaphore, NULL);
device_data->vtable.DestroyFence(device_data->device, draw->fence, NULL);
device_data->vtable.DestroyBuffer(device_data->device, draw->vertex_buffer, NULL);
device_data->vtable.DestroyBuffer(device_data->device, draw->index_buffer, NULL);
device_data->vtable.FreeMemory(device_data->device, draw->vertex_buffer_mem, NULL);
device_data->vtable.FreeMemory(device_data->device, draw->index_buffer_mem, NULL);
delete draw;
}
for (size_t i = 0; i < data->images.size(); i++) {
device_data->vtable.DestroyImageView(device_data->device, data->image_views[i], NULL);
device_data->vtable.DestroyFramebuffer(device_data->device, data->framebuffers[i], NULL);
}
device_data->vtable.DestroyRenderPass(device_data->device, data->render_pass, NULL);
device_data->vtable.DestroyCommandPool(device_data->device, data->command_pool, NULL);
device_data->vtable.DestroyPipeline(device_data->device, data->pipeline, NULL);
device_data->vtable.DestroyPipelineLayout(device_data->device, data->pipeline_layout, NULL);
device_data->vtable.DestroyDescriptorPool(device_data->device,
data->descriptor_pool, NULL);
device_data->vtable.DestroyDescriptorSetLayout(device_data->device,
data->descriptor_layout, NULL);
device_data->vtable.DestroySampler(device_data->device, data->font_sampler, NULL);
device_data->vtable.DestroyImageView(device_data->device, data->font_image_view, NULL);
device_data->vtable.DestroyImage(device_data->device, data->font_image, NULL);
device_data->vtable.FreeMemory(device_data->device, data->font_mem, NULL);
device_data->vtable.DestroyBuffer(device_data->device, data->upload_font_buffer, NULL);
device_data->vtable.FreeMemory(device_data->device, data->upload_font_buffer_mem, NULL);
ImGui::DestroyContext(data->imgui_context);
}
static struct overlay_draw *before_present(struct swapchain_data *swapchain_data,
struct queue_data *present_queue,
const VkSemaphore *wait_semaphores,
unsigned n_wait_semaphores,
unsigned imageIndex)
{
struct overlay_draw *draw = NULL;
snapshot_swapchain_frame(swapchain_data);
if (swapchain_data->sw_stats.n_frames > 0) {
compute_swapchain_display(swapchain_data);
draw = render_swapchain_display(swapchain_data, present_queue,
wait_semaphores, n_wait_semaphores,
imageIndex);
}
return draw;
}
static VkResult overlay_CreateSwapchainKHR(
VkDevice device,
const VkSwapchainCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSwapchainKHR* pSwapchain)
{
struct device_data *device_data = FIND(struct device_data, device);
array<VkPresentModeKHR, 4> modes = {VK_PRESENT_MODE_FIFO_RELAXED_KHR,
VK_PRESENT_MODE_IMMEDIATE_KHR,
VK_PRESENT_MODE_MAILBOX_KHR,
VK_PRESENT_MODE_FIFO_KHR};
if (device_data->instance->params.vsync < 4)
const_cast<VkSwapchainCreateInfoKHR*> (pCreateInfo)->presentMode = modes[device_data->instance->params.vsync];
VkResult result = device_data->vtable.CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain);
if (result != VK_SUCCESS) return result;
struct swapchain_data *swapchain_data = new_swapchain_data(*pSwapchain, device_data);
setup_swapchain_data(swapchain_data, pCreateInfo, device_data->instance->params);
const VkPhysicalDeviceProperties& prop = device_data->properties;
swapchain_data->sw_stats.version_vk.major = VK_VERSION_MAJOR(prop.apiVersion);
swapchain_data->sw_stats.version_vk.minor = VK_VERSION_MINOR(prop.apiVersion);
swapchain_data->sw_stats.version_vk.patch = VK_VERSION_PATCH(prop.apiVersion);
swapchain_data->sw_stats.engineName = device_data->instance->engineName;
swapchain_data->sw_stats.engineVersion = device_data->instance->engineVersion;
std::stringstream ss;
ss << prop.deviceName;
if (prop.vendorID == 0x10de) {
ss << " (" << ((prop.driverVersion >> 22) & 0x3ff);
ss << "." << ((prop.driverVersion >> 14) & 0x0ff);
ss << "." << std::setw(2) << std::setfill('0') << ((prop.driverVersion >> 6) & 0x0ff);
#ifdef _WIN32
} else if (prop.vendorID == 0x8086) {
ss << " (" << (prop.driverVersion >> 14);
ss << "." << (prop.driverVersion & 0x3fff);
}
#endif
} else {
ss << " (" << VK_VERSION_MAJOR(prop.driverVersion);
ss << "." << VK_VERSION_MINOR(prop.driverVersion);
ss << "." << VK_VERSION_PATCH(prop.driverVersion);
}
ss << ")";
swapchain_data->sw_stats.deviceName = ss.str();
return result;
}
static void overlay_DestroySwapchainKHR(
VkDevice device,
VkSwapchainKHR swapchain,
const VkAllocationCallbacks* pAllocator)
{
struct swapchain_data *swapchain_data =
FIND(struct swapchain_data, swapchain);
shutdown_swapchain_data(swapchain_data);
swapchain_data->device->vtable.DestroySwapchainKHR(device, swapchain, pAllocator);
destroy_swapchain_data(swapchain_data);
}
void FpsLimiter(struct fps_limit& stats){
stats.sleepTime = stats.targetFrameTime - (stats.frameStart - stats.frameEnd);
if (stats.sleepTime > stats.frameOverhead) {
int64_t adjustedSleep = stats.sleepTime - stats.frameOverhead;
this_thread::sleep_for(chrono::nanoseconds(adjustedSleep));
stats.frameOverhead = ((os_time_get_nano() - stats.frameStart) - adjustedSleep);
if (stats.frameOverhead > stats.targetFrameTime)
stats.frameOverhead = 0;
}
}
static VkResult overlay_QueuePresentKHR(
VkQueue queue,
const VkPresentInfoKHR* pPresentInfo)
{
struct queue_data *queue_data = FIND(struct queue_data, queue);
/* Otherwise we need to add our overlay drawing semaphore to the list of
* semaphores to wait on. If we don't do that the presented picture might
* be have incomplete overlay drawings.
*/
VkResult result = VK_SUCCESS;
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) {
VkSwapchainKHR swapchain = pPresentInfo->pSwapchains[i];
struct swapchain_data *swapchain_data =
FIND(struct swapchain_data, swapchain);
uint32_t image_index = pPresentInfo->pImageIndices[i];
VkPresentInfoKHR present_info = *pPresentInfo;
present_info.swapchainCount = 1;
present_info.pSwapchains = &swapchain;
present_info.pImageIndices = &image_index;
struct overlay_draw *draw = before_present(swapchain_data,
queue_data,
pPresentInfo->pWaitSemaphores,
pPresentInfo->waitSemaphoreCount,
image_index);
/* Because the submission of the overlay draw waits on the semaphores
* handed for present, we don't need to have this present operation
* wait on them as well, we can just wait on the overlay submission
* semaphore.
*/
if (draw) {
present_info.pWaitSemaphores = &draw->semaphore;
present_info.waitSemaphoreCount = 1;
}
VkResult chain_result = queue_data->device->vtable.QueuePresentKHR(queue, &present_info);
if (pPresentInfo->pResults)
pPresentInfo->pResults[i] = chain_result;
if (chain_result != VK_SUCCESS && result == VK_SUCCESS)
result = chain_result;
}
if (fps_limit_stats.targetFrameTime > 0){
fps_limit_stats.frameStart = os_time_get_nano();
FpsLimiter(fps_limit_stats);
fps_limit_stats.frameEnd = os_time_get_nano();
}
return result;
}
static VkResult overlay_BeginCommandBuffer(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
/* Otherwise record a begin query as first command. */
VkResult result = device_data->vtable.BeginCommandBuffer(commandBuffer, pBeginInfo);
return result;
}
static VkResult overlay_EndCommandBuffer(
VkCommandBuffer commandBuffer)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
return device_data->vtable.EndCommandBuffer(commandBuffer);
}
static VkResult overlay_ResetCommandBuffer(
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
return device_data->vtable.ResetCommandBuffer(commandBuffer, flags);
}
static void overlay_CmdExecuteCommands(
VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
device_data->vtable.CmdExecuteCommands(commandBuffer, commandBufferCount, pCommandBuffers);
}
static VkResult overlay_AllocateCommandBuffers(
VkDevice device,
const VkCommandBufferAllocateInfo* pAllocateInfo,
VkCommandBuffer* pCommandBuffers)
{
struct device_data *device_data = FIND(struct device_data, device);
VkResult result =
device_data->vtable.AllocateCommandBuffers(device, pAllocateInfo, pCommandBuffers);
if (result != VK_SUCCESS)
return result;
for (uint32_t i = 0; i < pAllocateInfo->commandBufferCount; i++) {
new_command_buffer_data(pCommandBuffers[i], pAllocateInfo->level,
device_data);
}
return result;
}
static void overlay_FreeCommandBuffers(
VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers)
{
struct device_data *device_data = FIND(struct device_data, device);
for (uint32_t i = 0; i < commandBufferCount; i++) {
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, pCommandBuffers[i]);
/* It is legal to free a NULL command buffer*/
if (!cmd_buffer_data)
continue;
destroy_command_buffer_data(cmd_buffer_data);
}
device_data->vtable.FreeCommandBuffers(device, commandPool,
commandBufferCount, pCommandBuffers);
}
static VkResult overlay_QueueSubmit(
VkQueue queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence fence)
{
struct queue_data *queue_data = FIND(struct queue_data, queue);
struct device_data *device_data = queue_data->device;
return device_data->vtable.QueueSubmit(queue, submitCount, pSubmits, fence);
}
static VkResult overlay_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
struct instance_data *instance_data =
FIND(struct instance_data, physicalDevice);
VkLayerDeviceCreateInfo *chain_info =
get_device_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(NULL, "vkCreateDevice");
if (fpCreateDevice == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkPhysicalDeviceFeatures device_features = {};
VkDeviceCreateInfo device_info = *pCreateInfo;
if (pCreateInfo->pEnabledFeatures)
device_features = *(pCreateInfo->pEnabledFeatures);
device_info.pEnabledFeatures = &device_features;
VkResult result = fpCreateDevice(physicalDevice, &device_info, pAllocator, pDevice);
if (result != VK_SUCCESS) return result;
struct device_data *device_data = new_device_data(*pDevice, instance_data);
device_data->physical_device = physicalDevice;
vk_load_device_commands(*pDevice, fpGetDeviceProcAddr, &device_data->vtable);
instance_data->vtable.GetPhysicalDeviceProperties(device_data->physical_device,
&device_data->properties);
VkLayerDeviceCreateInfo *load_data_info =
get_device_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
device_data->set_device_loader_data = load_data_info->u.pfnSetDeviceLoaderData;
if (!is_blacklisted()) {
device_map_queues(device_data, pCreateInfo);
init_gpu_stats(device_data->properties.vendorID, instance_data->params);
init_system_info();
}
return result;
}
static void overlay_DestroyDevice(
VkDevice device,
const VkAllocationCallbacks* pAllocator)
{
struct device_data *device_data = FIND(struct device_data, device);
if (!is_blacklisted())
device_unmap_queues(device_data);
device_data->vtable.DestroyDevice(device, pAllocator);
destroy_device_data(device_data);
}
static VkResult overlay_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
VkLayerInstanceCreateInfo *chain_info =
get_instance_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
std::string engineName, engineVersion;
if (!is_blacklisted()) {
const char* pEngineName = nullptr;
if (pCreateInfo->pApplicationInfo)
pEngineName = pCreateInfo->pApplicationInfo->pEngineName;
if (pEngineName)
engineName = pEngineName;
if (engineName == "DXVK" || engineName == "vkd3d") {
int engineVer = pCreateInfo->pApplicationInfo->engineVersion;
engineVersion = to_string(VK_VERSION_MAJOR(engineVer)) + "." + to_string(VK_VERSION_MINOR(engineVer)) + "." + to_string(VK_VERSION_PATCH(engineVer));
}
if (engineName != "DXVK" && engineName != "vkd3d" && engineName != "Feral3D")
engineName = "VULKAN";
if (engineName == "vkd3d")
engineName = "VKD3D";
}
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr =
chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkCreateInstance fpCreateInstance =
(PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance");
if (fpCreateInstance == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
if (result != VK_SUCCESS) return result;
struct instance_data *instance_data = new_instance_data(*pInstance);
vk_load_instance_commands(instance_data->instance,
fpGetInstanceProcAddr,
&instance_data->vtable);
instance_data_map_physical_devices(instance_data, true);
if (!is_blacklisted()) {
parse_overlay_config(&instance_data->params, getenv("MANGOHUD_CONFIG"));
instance_data->notifier.params = &instance_data->params;
start_notifier(instance_data->notifier);
init_cpu_stats(instance_data->params);
// Adjust height for DXVK/VKD3D version number
if (engineName == "DXVK" || engineName == "VKD3D"){
if (instance_data->params.font_size){
instance_data->params.height += instance_data->params.font_size / 2;
} else {
instance_data->params.height += 24 / 2;
}
}
instance_data->engineName = engineName;
instance_data->engineVersion = engineVersion;
}
return result;
}
static void overlay_DestroyInstance(
VkInstance instance,
const VkAllocationCallbacks* pAllocator)
{
struct instance_data *instance_data = FIND(struct instance_data, instance);
instance_data_map_physical_devices(instance_data, false);
instance_data->vtable.DestroyInstance(instance, pAllocator);
if (!is_blacklisted())
stop_notifier(instance_data->notifier);
destroy_instance_data(instance_data);
}
extern "C" VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL overlay_GetDeviceProcAddr(VkDevice dev,
const char *funcName);
static const struct {
const char *name;
void *ptr;
} name_to_funcptr_map[] = {
{ "vkGetDeviceProcAddr", (void *) overlay_GetDeviceProcAddr },
#define ADD_HOOK(fn) { "vk" # fn, (void *) overlay_ ## fn }
#define ADD_ALIAS_HOOK(alias, fn) { "vk" # alias, (void *) overlay_ ## fn }
ADD_HOOK(AllocateCommandBuffers),
ADD_HOOK(FreeCommandBuffers),
ADD_HOOK(ResetCommandBuffer),
ADD_HOOK(BeginCommandBuffer),
ADD_HOOK(EndCommandBuffer),
ADD_HOOK(CmdExecuteCommands),
ADD_HOOK(CreateSwapchainKHR),
ADD_HOOK(QueuePresentKHR),
ADD_HOOK(DestroySwapchainKHR),
ADD_HOOK(QueueSubmit),
ADD_HOOK(CreateDevice),
ADD_HOOK(DestroyDevice),
ADD_HOOK(CreateInstance),
ADD_HOOK(DestroyInstance),
#undef ADD_HOOK
};
static void *find_ptr(const char *name)
{
std::string f(name);
if (is_blacklisted() && (f != "vkCreateInstance" && f != "vkDestroyInstance" && f != "vkCreateDevice" && f != "vkDestroyDevice"))
{
return NULL;
}
for (uint32_t i = 0; i < ARRAY_SIZE(name_to_funcptr_map); i++) {
if (strcmp(name, name_to_funcptr_map[i].name) == 0)
return name_to_funcptr_map[i].ptr;
}
return NULL;
}
extern "C" VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL overlay_GetDeviceProcAddr(VkDevice dev,
const char *funcName)
{
void *ptr = find_ptr(funcName);
if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
if (dev == NULL) return NULL;
struct device_data *device_data = FIND(struct device_data, dev);
if (device_data->vtable.GetDeviceProcAddr == NULL) return NULL;
return device_data->vtable.GetDeviceProcAddr(dev, funcName);
}
extern "C" VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL overlay_GetInstanceProcAddr(VkInstance instance,
const char *funcName)
{
void *ptr = find_ptr(funcName);
if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
if (instance == NULL) return NULL;
struct instance_data *instance_data = FIND(struct instance_data, instance);
if (instance_data->vtable.GetInstanceProcAddr == NULL) return NULL;
return instance_data->vtable.GetInstanceProcAddr(instance, funcName);
}