You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MangoHud/src/overlay.cpp

2633 lines
102 KiB
C++

/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <vulkan/vulkan.h>
#include <vulkan/vk_layer.h>
#include "imgui.h"
#include "overlay_params.h"
#include "font_default.h"
// #include "util/debug.h"
#include "mesa/util/hash_table.h"
#include "mesa/util/list.h"
#include "mesa/util/ralloc.h"
#include "mesa/util/os_time.h"
#include "mesa/util/os_socket.h"
#include "mesa/util/simple_mtx.h"
#include "vk_enum_to_str.h"
#include <vulkan/vk_util.h>
#include "string_utils.h"
#include "file_utils.h"
#include "cpu_gpu.h"
#include "logging.h"
#include "keybinds.h"
#include "cpu.h"
#include "loaders/loader_nvml.h"
bool open = false, displayHud = true;
string gpuString;
float offset_x, offset_y, hudSpacing;
int hudFirstRow, hudSecondRow;
const char* offset_x_env = std::getenv("X_OFFSET");
const char* offset_y_env = std::getenv("Y_OFFSET");
string engineName, engineVersion;
ImFont* font = nullptr;
ImFont* font1 = nullptr;
/* Mapped from VkInstace/VkPhysicalDevice */
struct instance_data {
struct vk_instance_dispatch_table vtable;
VkInstance instance;
struct overlay_params params;
bool pipeline_statistics_enabled;
bool first_line_printed;
int control_client;
/* Dumping of frame stats to a file has been enabled. */
bool capture_enabled;
/* Dumping of frame stats to a file has been enabled and started. */
bool capture_started;
};
struct frame_stat {
uint64_t stats[OVERLAY_PARAM_ENABLED_MAX];
};
/* Mapped from VkDevice */
struct queue_data;
struct device_data {
struct instance_data *instance;
PFN_vkSetDeviceLoaderData set_device_loader_data;
struct vk_device_dispatch_table vtable;
VkPhysicalDevice physical_device;
VkDevice device;
VkPhysicalDeviceProperties properties;
struct queue_data *graphic_queue;
struct queue_data **queues;
uint32_t n_queues;
/* For a single frame */
struct frame_stat frame_stats;
bool gpu_stats = false;
};
/* Mapped from VkCommandBuffer */
struct command_buffer_data {
struct device_data *device;
VkCommandBufferLevel level;
VkCommandBuffer cmd_buffer;
VkQueryPool timestamp_query_pool;
uint32_t query_index;
struct frame_stat stats;
struct list_head link; /* link into queue_data::running_command_buffer */
};
/* Mapped from VkQueue */
struct queue_data {
struct device_data *device;
VkQueue queue;
VkQueueFlags flags;
uint32_t family_index;
uint64_t timestamp_mask;
VkFence queries_fence;
struct list_head running_command_buffer;
};
struct overlay_draw {
struct list_head link;
VkCommandBuffer command_buffer;
VkSemaphore semaphore;
VkFence fence;
VkBuffer vertex_buffer;
VkDeviceMemory vertex_buffer_mem;
VkDeviceSize vertex_buffer_size;
VkBuffer index_buffer;
VkDeviceMemory index_buffer_mem;
VkDeviceSize index_buffer_size;
};
/* Mapped from VkSwapchainKHR */
struct swapchain_data {
struct device_data *device;
VkSwapchainKHR swapchain;
unsigned width, height;
VkFormat format;
uint32_t n_images;
VkImage *images;
VkImageView *image_views;
VkFramebuffer *framebuffers;
VkRenderPass render_pass;
VkDescriptorPool descriptor_pool;
VkDescriptorSetLayout descriptor_layout;
VkDescriptorSet descriptor_set;
VkSampler font_sampler;
VkPipelineLayout pipeline_layout;
VkPipeline pipeline;
VkCommandPool command_pool;
struct list_head draws; /* List of struct overlay_draw */
bool font_uploaded;
VkImage font_image;
VkImageView font_image_view;
VkDeviceMemory font_mem;
VkBuffer upload_font_buffer;
VkDeviceMemory upload_font_buffer_mem;
/**/
ImGuiContext* imgui_context;
ImVec2 window_size;
/**/
uint64_t n_frames;
uint64_t last_present_time;
unsigned n_frames_since_update;
uint64_t last_fps_update;
double fps;
double frametime;
double frametimeDisplay;
const char* cpuString;
const char* gpuString;
enum overlay_param_enabled stat_selector;
double time_dividor;
struct frame_stat stats_min, stats_max;
struct frame_stat frames_stats[200];
/* Over a single frame */
struct frame_stat frame_stats;
/* Over fps_sampling_period */
struct frame_stat accumulated_stats;
};
static const VkQueryPipelineStatisticFlags overlay_query_flags =
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT |
VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT |
VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT |
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT |
VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT |
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT |
VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT |
VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT |
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT |
VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT |
VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT;
#define OVERLAY_QUERY_COUNT (11)
static struct hash_table_u64 *vk_object_to_data = NULL;
static simple_mtx_t vk_object_to_data_mutex = _SIMPLE_MTX_INITIALIZER_NP;
thread_local ImGuiContext* __MesaImGui;
static inline void ensure_vk_object_map(void)
{
if (!vk_object_to_data)
vk_object_to_data = _mesa_hash_table_u64_create(NULL);
}
#define HKEY(obj) ((uint64_t)(obj))
#define FIND(type, obj) ((type *)find_object_data(HKEY(obj)))
static void *find_object_data(uint64_t obj)
{
simple_mtx_lock(&vk_object_to_data_mutex);
ensure_vk_object_map();
void *data = _mesa_hash_table_u64_search(vk_object_to_data, obj);
simple_mtx_unlock(&vk_object_to_data_mutex);
return data;
}
static void map_object(uint64_t obj, void *data)
{
simple_mtx_lock(&vk_object_to_data_mutex);
ensure_vk_object_map();
_mesa_hash_table_u64_insert(vk_object_to_data, obj, data);
simple_mtx_unlock(&vk_object_to_data_mutex);
}
static void unmap_object(uint64_t obj)
{
simple_mtx_lock(&vk_object_to_data_mutex);
_mesa_hash_table_u64_remove(vk_object_to_data, obj);
simple_mtx_unlock(&vk_object_to_data_mutex);
}
/**/
#define VK_CHECK(expr) \
do { \
VkResult __result = (expr); \
if (__result != VK_SUCCESS) { \
fprintf(stderr, "'%s' line %i failed with %s\n", \
#expr, __LINE__, vk_Result_to_str(__result)); \
} \
} while (0)
/**/
static VkLayerInstanceCreateInfo *get_instance_chain_info(const VkInstanceCreateInfo *pCreateInfo,
VkLayerFunction func)
{
vk_foreach_struct(item, pCreateInfo->pNext) {
if (item->sType == VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO &&
((VkLayerInstanceCreateInfo *) item)->function == func)
return (VkLayerInstanceCreateInfo *) item;
}
unreachable("instance chain info not found");
return NULL;
}
static VkLayerDeviceCreateInfo *get_device_chain_info(const VkDeviceCreateInfo *pCreateInfo,
VkLayerFunction func)
{
vk_foreach_struct(item, pCreateInfo->pNext) {
if (item->sType == VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO &&
((VkLayerDeviceCreateInfo *) item)->function == func)
return (VkLayerDeviceCreateInfo *)item;
}
unreachable("device chain info not found");
return NULL;
}
static struct VkBaseOutStructure *
clone_chain(const struct VkBaseInStructure *chain)
{
struct VkBaseOutStructure *head = NULL, *tail = NULL;
vk_foreach_struct_const(item, chain) {
size_t item_size = vk_structure_type_size(item);
struct VkBaseOutStructure *new_item =
(struct VkBaseOutStructure *)malloc(item_size);;
memcpy(new_item, item, item_size);
if (!head)
head = new_item;
if (tail)
tail->pNext = new_item;
tail = new_item;
}
return head;
}
static void
free_chain(struct VkBaseOutStructure *chain)
{
while (chain) {
void *node = chain;
chain = chain->pNext;
free(node);
}
}
/**/
static struct instance_data *new_instance_data(VkInstance instance)
{
struct instance_data *data = rzalloc(NULL, struct instance_data);
data->instance = instance;
data->control_client = -1;
map_object(HKEY(data->instance), data);
return data;
}
static void destroy_instance_data(struct instance_data *data)
{
if (data->params.output_file)
fclose(data->params.output_file);
if (data->params.control >= 0)
os_socket_close(data->params.control);
unmap_object(HKEY(data->instance));
ralloc_free(data);
}
static void instance_data_map_physical_devices(struct instance_data *instance_data,
bool map)
{
uint32_t physicalDeviceCount = 0;
instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
&physicalDeviceCount,
NULL);
VkPhysicalDevice *physicalDevices = (VkPhysicalDevice *) malloc(sizeof(VkPhysicalDevice) * physicalDeviceCount);
instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
&physicalDeviceCount,
physicalDevices);
for (uint32_t i = 0; i < physicalDeviceCount; i++) {
if (map)
map_object(HKEY(physicalDevices[i]), instance_data);
else
unmap_object(HKEY(physicalDevices[i]));
}
free(physicalDevices);
}
/**/
static struct device_data *new_device_data(VkDevice device, struct instance_data *instance)
{
struct device_data *data = rzalloc(NULL, struct device_data);
data->instance = instance;
data->device = device;
map_object(HKEY(data->device), data);
return data;
}
static struct queue_data *new_queue_data(VkQueue queue,
const VkQueueFamilyProperties *family_props,
uint32_t family_index,
struct device_data *device_data)
{
struct queue_data *data = rzalloc(device_data, struct queue_data);
data->device = device_data;
data->queue = queue;
data->flags = family_props->queueFlags;
data->timestamp_mask = (1ull << family_props->timestampValidBits) - 1;
data->family_index = family_index;
list_inithead(&data->running_command_buffer);
map_object(HKEY(data->queue), data);
/* Fence synchronizing access to queries on that queue. */
VkFenceCreateInfo fence_info = {};
fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fence_info.flags = VK_FENCE_CREATE_SIGNALED_BIT;
VK_CHECK(device_data->vtable.CreateFence(device_data->device,
&fence_info,
NULL,
&data->queries_fence));
if (data->flags & VK_QUEUE_GRAPHICS_BIT)
device_data->graphic_queue = data;
return data;
}
static void destroy_queue(struct queue_data *data)
{
struct device_data *device_data = data->device;
device_data->vtable.DestroyFence(device_data->device, data->queries_fence, NULL);
unmap_object(HKEY(data->queue));
ralloc_free(data);
}
static void device_map_queues(struct device_data *data,
const VkDeviceCreateInfo *pCreateInfo)
{
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
data->n_queues += pCreateInfo->pQueueCreateInfos[i].queueCount;
data->queues = ralloc_array(data, struct queue_data *, data->n_queues);
struct instance_data *instance_data = data->instance;
uint32_t n_family_props;
instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
&n_family_props,
NULL);
VkQueueFamilyProperties *family_props =
(VkQueueFamilyProperties *)malloc(sizeof(VkQueueFamilyProperties) * n_family_props);
instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
&n_family_props,
family_props);
uint32_t queue_index = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
for (uint32_t j = 0; j < pCreateInfo->pQueueCreateInfos[i].queueCount; j++) {
VkQueue queue;
data->vtable.GetDeviceQueue(data->device,
pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex,
j, &queue);
VK_CHECK(data->set_device_loader_data(data->device, queue));
data->queues[queue_index++] =
new_queue_data(queue, &family_props[pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex],
pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex, data);
}
}
free(family_props);
}
static void device_unmap_queues(struct device_data *data)
{
for (uint32_t i = 0; i < data->n_queues; i++)
destroy_queue(data->queues[i]);
}
static void destroy_device_data(struct device_data *data)
{
unmap_object(HKEY(data->device));
ralloc_free(data);
}
/**/
static struct command_buffer_data *new_command_buffer_data(VkCommandBuffer cmd_buffer,
VkCommandBufferLevel level,
VkQueryPool timestamp_query_pool,
uint32_t query_index,
struct device_data *device_data)
{
struct command_buffer_data *data = rzalloc(NULL, struct command_buffer_data);
data->device = device_data;
data->cmd_buffer = cmd_buffer;
data->level = level;
data->timestamp_query_pool = timestamp_query_pool;
data->query_index = query_index;
list_inithead(&data->link);
map_object(HKEY(data->cmd_buffer), data);
return data;
}
static void destroy_command_buffer_data(struct command_buffer_data *data)
{
unmap_object(HKEY(data->cmd_buffer));
list_delinit(&data->link);
ralloc_free(data);
}
/**/
static struct swapchain_data *new_swapchain_data(VkSwapchainKHR swapchain,
struct device_data *device_data)
{
struct instance_data *instance_data = device_data->instance;
struct swapchain_data *data = rzalloc(NULL, struct swapchain_data);
data->device = device_data;
data->swapchain = swapchain;
data->window_size = ImVec2(instance_data->params.width, instance_data->params.height);
list_inithead(&data->draws);
map_object(HKEY(data->swapchain), data);
return data;
}
static void destroy_swapchain_data(struct swapchain_data *data)
{
unmap_object(HKEY(data->swapchain));
ralloc_free(data);
}
struct overlay_draw *get_overlay_draw(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct overlay_draw *draw = list_is_empty(&data->draws) ?
NULL : list_first_entry(&data->draws, struct overlay_draw, link);
VkSemaphoreCreateInfo sem_info = {};
sem_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
if (draw && device_data->vtable.GetFenceStatus(device_data->device, draw->fence) == VK_SUCCESS) {
list_del(&draw->link);
VK_CHECK(device_data->vtable.ResetFences(device_data->device,
1, &draw->fence));
list_addtail(&draw->link, &data->draws);
return draw;
}
draw = rzalloc(data, struct overlay_draw);
VkCommandBufferAllocateInfo cmd_buffer_info = {};
cmd_buffer_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmd_buffer_info.commandPool = data->command_pool;
cmd_buffer_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmd_buffer_info.commandBufferCount = 1;
VK_CHECK(device_data->vtable.AllocateCommandBuffers(device_data->device,
&cmd_buffer_info,
&draw->command_buffer));
VK_CHECK(device_data->set_device_loader_data(device_data->device,
draw->command_buffer));
VkFenceCreateInfo fence_info = {};
fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
VK_CHECK(device_data->vtable.CreateFence(device_data->device,
&fence_info,
NULL,
&draw->fence));
VK_CHECK(device_data->vtable.CreateSemaphore(device_data->device, &sem_info,
NULL, &draw->semaphore));
list_addtail(&draw->link, &data->draws);
return draw;
}
static const char *param_unit(enum overlay_param_enabled param)
{
switch (param) {
case OVERLAY_PARAM_ENABLED_frame_timing:
case OVERLAY_PARAM_ENABLED_present_timing:
return "(us)";
case OVERLAY_PARAM_ENABLED_gpu_timing:
return "(ns)";
default:
return "";
}
}
static void parse_command(struct instance_data *instance_data,
const char *cmd, unsigned cmdlen,
const char *param, unsigned paramlen)
{
if (!strncmp(cmd, "capture", cmdlen)) {
int value = atoi(param);
bool enabled = value > 0;
if (enabled) {
instance_data->capture_enabled = true;
} else {
instance_data->capture_enabled = false;
instance_data->capture_started = false;
}
}
}
#define BUFSIZE 4096
/**
* This function will process commands through the control file.
*
* A command starts with a colon, followed by the command, and followed by an
* option '=' and a parameter. It has to end with a semi-colon. A full command
* + parameter looks like:
*
* :cmd=param;
*/
static void process_char(struct instance_data *instance_data, char c)
{
static char cmd[BUFSIZE];
static char param[BUFSIZE];
static unsigned cmdpos = 0;
static unsigned parampos = 0;
static bool reading_cmd = false;
static bool reading_param = false;
switch (c) {
case ':':
cmdpos = 0;
parampos = 0;
reading_cmd = true;
reading_param = false;
break;
case ';':
if (!reading_cmd)
break;
cmd[cmdpos++] = '\0';
param[parampos++] = '\0';
parse_command(instance_data, cmd, cmdpos, param, parampos);
reading_cmd = false;
reading_param = false;
break;
case '=':
if (!reading_cmd)
break;
reading_param = true;
break;
default:
if (!reading_cmd)
break;
if (reading_param) {
/* overflow means an invalid parameter */
if (parampos >= BUFSIZE - 1) {
reading_cmd = false;
reading_param = false;
break;
}
param[parampos++] = c;
} else {
/* overflow means an invalid command */
if (cmdpos >= BUFSIZE - 1) {
reading_cmd = false;
break;
}
cmd[cmdpos++] = c;
}
}
}
static void control_send(struct instance_data *instance_data,
const char *cmd, unsigned cmdlen,
const char *param, unsigned paramlen)
{
unsigned msglen = 0;
char buffer[BUFSIZE];
assert(cmdlen + paramlen + 3 < BUFSIZE);
buffer[msglen++] = ':';
memcpy(&buffer[msglen], cmd, cmdlen);
msglen += cmdlen;
if (paramlen > 0) {
buffer[msglen++] = '=';
memcpy(&buffer[msglen], param, paramlen);
msglen += paramlen;
buffer[msglen++] = ';';
}
os_socket_send(instance_data->control_client, buffer, msglen, 0);
}
static void control_send_connection_string(struct device_data *device_data)
{
struct instance_data *instance_data = device_data->instance;
const char *controlVersionCmd = "MesaOverlayControlVersion";
const char *controlVersionString = "1";
control_send(instance_data, controlVersionCmd, strlen(controlVersionCmd),
controlVersionString, strlen(controlVersionString));
const char *deviceCmd = "DeviceName";
const char *deviceName = device_data->properties.deviceName;
control_send(instance_data, deviceCmd, strlen(deviceCmd),
deviceName, strlen(deviceName));
const char *mesaVersionCmd = "MesaVersion";
const char *mesaVersionString = "Mesa " PACKAGE_VERSION;
control_send(instance_data, mesaVersionCmd, strlen(mesaVersionCmd),
mesaVersionString, strlen(mesaVersionString));
}
static void control_client_check(struct device_data *device_data)
{
struct instance_data *instance_data = device_data->instance;
/* Already connected, just return. */
if (instance_data->control_client >= 0)
return;
int socket = os_socket_accept(instance_data->params.control);
if (socket == -1) {
if (errno != EAGAIN && errno != EWOULDBLOCK && errno != ECONNABORTED)
fprintf(stderr, "ERROR on socket: %s\n", strerror(errno));
return;
}
if (socket >= 0) {
os_socket_block(socket, false);
instance_data->control_client = socket;
control_send_connection_string(device_data);
}
}
static void control_client_disconnected(struct instance_data *instance_data)
{
os_socket_close(instance_data->control_client);
instance_data->control_client = -1;
}
static void process_control_socket(struct instance_data *instance_data)
{
const int client = instance_data->control_client;
if (client >= 0) {
char buf[BUFSIZE];
while (true) {
ssize_t n = os_socket_recv(client, buf, BUFSIZE, 0);
if (n == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
/* nothing to read, try again later */
break;
}
if (errno != ECONNRESET)
fprintf(stderr, "ERROR on connection: %s\n", strerror(errno));
control_client_disconnected(instance_data);
} else if (n == 0) {
/* recv() returns 0 when the client disconnects */
control_client_disconnected(instance_data);
}
for (ssize_t i = 0; i < n; i++) {
process_char(instance_data, buf[i]);
}
/* If we try to read BUFSIZE and receive BUFSIZE bytes from the
* socket, there's a good chance that there's still more data to be
* read, so we will try again. Otherwise, simply be done for this
* iteration and try again on the next frame.
*/
if (n < BUFSIZE)
break;
}
}
}
static void snapshot_swapchain_frame(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
uint32_t f_idx = data->n_frames % ARRAY_SIZE(data->frames_stats);
uint64_t now = os_time_get(); /* us */
if (instance_data->params.control >= 0) {
control_client_check(device_data);
process_control_socket(instance_data);
}
double elapsed = (double)(now - data->last_fps_update); /* us */
elapsedF2 = (double)(now - last_f2_press);
elapsedF12 = (double)(now - last_f12_press);
fps = 1000000.0f * data->n_frames_since_update / elapsed;
if (data->last_present_time) {
data->frame_stats.stats[OVERLAY_PARAM_ENABLED_frame_timing] =
now - data->last_present_time;
}
memset(&data->frames_stats[f_idx], 0, sizeof(data->frames_stats[f_idx]));
for (int s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
data->frames_stats[f_idx].stats[s] += device_data->frame_stats.stats[s] + data->frame_stats.stats[s];
data->accumulated_stats.stats[s] += device_data->frame_stats.stats[s] + data->frame_stats.stats[s];
}
if (elapsedF2 >= 500000 && mangohud_output_env){
if (key_is_pressed(XK_F2)){
last_f2_press = now;
log_start = now;
loggingOn = !loggingOn;
if (loggingOn && log_period != 0)
pthread_create(&f2, NULL, &logging, NULL);
}
}
if (elapsedF12 >= 500000){
if (key_is_pressed(XK_F12)){
displayHud = !displayHud;
last_f12_press = now;
}
}
if (!sysInfoFetched) {
ram = exec("cat /proc/meminfo | grep 'MemTotal' | awk '{print $2}'");
trim(ram);
cpu = exec("cat /proc/cpuinfo | grep 'model name' | tail -n1 | sed 's/^.*: //' | sed 's/([^)]*)/()/g' | tr -d '(/)'");
trim(cpu);
kernel = exec("uname -r");
trim(kernel);
os = exec("cat /etc/*-release | grep 'PRETTY_NAME' | cut -d '=' -f 2-");
os.erase(remove(os.begin(), os.end(), '\"' ), os.end());
trim(os);
gpu = device_data->properties.deviceName;
driver = exec("glxinfo | grep 'OpenGL version' | sed 's/^.*: //' | cut -d' ' --output-delimiter=$'\n' -f1- | grep -v '(' | grep -v ')' | tr '\n' ' ' | cut -c 1-");
trim(driver);
//driver = itox(device_data->properties.driverVersion);
#ifndef NDEBUG
std::cout << "Ram:" << ram << "\n"
<< "Cpu:" << cpu << "\n"
<< "Kernel:" << kernel << "\n"
<< "Os:" << os << "\n"
<< "Gpu:" << gpu << "\n"
<< "Driver:" << driver << std::endl;
#endif
if (!log_period_env || !try_stoi(log_period, log_period_env))
log_period = 100;
if (log_period == 0)
out.open("/tmp/mango", ios::out | ios::app);
if (log_duration_env && !try_stoi(duration, log_duration_env))
duration = 0;
if (device_data->properties.vendorID == 0x8086){
libnvml_loader nvml("libnvidia-ml.so.1");
if (nvml.IsLoaded()) {
device_data->properties.vendorID = 0x10de;
device_data->gpu_stats = true;
}
}
if (device_data->properties.vendorID == 0x10de)
device_data->gpu_stats = checkNvidia();
// coreCounting();
if (device_data->properties.vendorID == 0x8086 || gpu.find("Radeon") != std::string::npos || gpu.find("AMD") != std::string::npos) {
string path;
string drm = "/sys/class/drm/";
auto dirs = ls(drm.c_str(), "card");
for (auto& dir : dirs) {
path = drm + dir;
#ifndef NDEBUG
std::cerr << "amdgpu path check: " << path << "/device/vendor" << std::endl;
#endif
string line = read_line(path + "/device/vendor");
trim(line);
if (line != "0x1002")
continue;
#ifndef NDEBUG
std::cerr << "using amdgpu path: " << path << std::endl;
#endif
if (file_exists(path + "/device/gpu_busy_percent")) {
amdGpuFile = fopen((path + "/device/gpu_busy_percent").c_str(), "r");
path = path + "/device/hwmon/";
string tempFolder;
if (find_folder(path, "hwmon", tempFolder)) {
path = path + tempFolder + "/temp1_input";
amdTempFile = fopen(path.c_str(), "r");
device_data->gpu_stats = true;
device_data->properties.vendorID = 0x1002;
break;
}
}
}
}
if (cpu.find("Intel") != std::string::npos) {
string path;
if (find_folder("/sys/devices/platform/coretemp.0/hwmon/", "hwmon", path)) {
path = "/sys/devices/platform/coretemp.0/hwmon/" + path + "/temp1_input";
if (file_exists(path))
cpuTempFile = fopen(path.c_str(), "r");
}
} else {
string name, path;
string hwmon = "/sys/class/hwmon/";
auto dirs = ls(hwmon.c_str());
for (auto& dir : dirs)
{
path = hwmon + dir;
name = read_line(path + "/name");
std::cerr << "hwmon: sensor name: " << name << std::endl;
if (name == "k10temp" || name == "zenpower"){
path += "/temp1_input";
break;
}
}
if (!file_exists(path)) {
cout << "MANGOHUD: Could not find temp location" << endl;
} else {
cpuTempFile = fopen(path.c_str(), "r");
}
}
// Adjust height for DXVK/VKD3D version number
if (engineName == "DXVK" || engineName == "VKD3D"){
if (instance_data->params.font_size){
instance_data->params.height += instance_data->params.font_size / 2;
} else {
instance_data->params.height += 24 / 2;
}
}
sysInfoFetched = true;
}
/* If capture has been enabled but it hasn't started yet, it means we are on
* the first snapshot after it has been enabled. At this point we want to
* use the stats captured so far to update the display, but we don't want
* this data to cause noise to the stats that we want to capture from now
* on.
*
* capture_begin == true will trigger an update of the fps on display, and a
* flush of the data, but no stats will be written to the output file. This
* way, we will have only stats from after the capture has been enabled
* written to the output_file.
*/
const bool capture_begin =
instance_data->capture_enabled && !instance_data->capture_started;
if (data->last_fps_update) {
if (capture_begin ||
elapsed >= instance_data->params.fps_sampling_period) {
cpuStats.UpdateCPUData();
cpuLoadLog = cpuStats.GetCPUDataTotal().percent;
if (cpuTempFile)
pthread_create(&cpuInfoThread, NULL, &cpuInfo, NULL);
if (device_data->gpu_stats) {
// get gpu usage
if (device_data->properties.vendorID == 0x10de)
pthread_create(&nvidiaSmiThread, NULL, &getNvidiaGpuInfo, NULL);
if (device_data->properties.vendorID == 0x1002)
pthread_create(&gpuThread, NULL, &getAmdGpuUsage, NULL);
}
// update variables for logging
// cpuLoadLog = cpuArray[0].value;
gpuLoadLog = gpuLoad;
data->frametimeDisplay = data->frametime;
data->fps = fps;
if (instance_data->capture_started) {
if (!instance_data->first_line_printed) {
bool first_column = true;
instance_data->first_line_printed = true;
#define OVERLAY_PARAM_BOOL(name) \
if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_##name]) { \
fprintf(instance_data->params.output_file, \
"%s%s%s", first_column ? "" : ", ", #name, \
param_unit(OVERLAY_PARAM_ENABLED_##name)); \
first_column = false; \
}
#define OVERLAY_PARAM_CUSTOM(name)
OVERLAY_PARAMS
#undef OVERLAY_PARAM_BOOL
#undef OVERLAY_PARAM_CUSTOM
fprintf(instance_data->params.output_file, "\n");
}
for (int s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
if (!instance_data->params.enabled[s])
continue;
if (s == OVERLAY_PARAM_ENABLED_fps) {
fprintf(instance_data->params.output_file,
"%s%.2f", s == 0 ? "" : ", ", data->fps);
} else {
fprintf(instance_data->params.output_file,
"%s%" PRIu64, s == 0 ? "" : ", ",
data->accumulated_stats.stats[s]);
}
}
fprintf(instance_data->params.output_file, "\n");
fflush(instance_data->params.output_file);
}
memset(&data->accumulated_stats, 0, sizeof(data->accumulated_stats));
data->n_frames_since_update = 0;
data->last_fps_update = now;
if (capture_begin)
instance_data->capture_started = true;
}
} else {
data->last_fps_update = now;
}
memset(&device_data->frame_stats, 0, sizeof(device_data->frame_stats));
memset(&data->frame_stats, 0, sizeof(device_data->frame_stats));
data->last_present_time = now;
data->n_frames++;
data->n_frames_since_update++;
}
static float get_time_stat(void *_data, int _idx)
{
struct swapchain_data *data = (struct swapchain_data *) _data;
if ((ARRAY_SIZE(data->frames_stats) - _idx) > data->n_frames)
return 0.0f;
int idx = ARRAY_SIZE(data->frames_stats) +
data->n_frames < ARRAY_SIZE(data->frames_stats) ?
_idx - data->n_frames :
_idx + data->n_frames;
idx %= ARRAY_SIZE(data->frames_stats);
/* Time stats are in us. */
return data->frames_stats[idx].stats[data->stat_selector] / data->time_dividor;
}
static float get_stat(void *_data, int _idx)
{
struct swapchain_data *data = (struct swapchain_data *) _data;
if ((ARRAY_SIZE(data->frames_stats) - _idx) > data->n_frames)
return 0.0f;
int idx = ARRAY_SIZE(data->frames_stats) +
data->n_frames < ARRAY_SIZE(data->frames_stats) ?
_idx - data->n_frames :
_idx + data->n_frames;
idx %= ARRAY_SIZE(data->frames_stats);
return data->frames_stats[idx].stats[data->stat_selector];
}
static void position_layer(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
float margin = 10.0f;
if (offset_x_env)
margin = 0.0f;
ImGui::SetNextWindowBgAlpha(0.5);
ImGui::SetNextWindowSize(ImVec2(instance_data->params.width, instance_data->params.height), ImGuiCond_Always);
ImGui::PushStyleVar(ImGuiStyleVar_WindowBorderSize, 0.0f);
ImGui::PushStyleVar(ImGuiStyleVar_ItemSpacing, ImVec2(8,-3));
if (offset_x_env)
offset_x = std::stof(offset_x_env);
if (offset_y_env)
offset_y = std::stof(offset_y_env);
switch (instance_data->params.position) {
case LAYER_POSITION_TOP_LEFT:
ImGui::SetNextWindowPos(ImVec2(margin + offset_x, margin + offset_y), ImGuiCond_Always);
break;
case LAYER_POSITION_TOP_RIGHT:
ImGui::SetNextWindowPos(ImVec2(data->width - data->window_size.x - margin, margin),
ImGuiCond_Always);
break;
case LAYER_POSITION_BOTTOM_LEFT:
ImGui::SetNextWindowPos(ImVec2(margin, data->height - data->window_size.y - margin),
ImGuiCond_Always);
break;
case LAYER_POSITION_BOTTOM_RIGHT:
ImGui::SetNextWindowPos(ImVec2(data->width - data->window_size.x - margin,
data->height - data->window_size.y - margin),
ImGuiCond_Always);
break;
}
}
static void compute_swapchain_display(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
struct instance_data *instance_data = device_data->instance;
ImGui::SetCurrentContext(data->imgui_context);
ImGui::NewFrame();
position_layer(data);
if (instance_data->params.font_size > 0 && instance_data->params.width == 280)
instance_data->params.width = hudFirstRow + hudSecondRow;
if(displayHud)
ImGui::Begin("Main", &open, ImGuiWindowFlags_NoDecoration);
if(!displayHud){
ImGui::SetNextWindowBgAlpha(0.01);
ImGui::Begin("Main", &open, ImGuiWindowFlags_NoDecoration);
}
if (displayHud){
if (device_data->gpu_stats){
ImGui::TextColored(ImVec4(0.180, 0.592, 0.384, 1.00f), "GPU");
ImGui::SameLine(hudFirstRow);
ImGui::Text("%i%%", gpuLoad);
// ImGui::SameLine(150);
// ImGui::Text("%s", "%");
if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_gpu_temp]){
ImGui::SameLine(hudSecondRow);
ImGui::Text("%i%s", gpuTemp, "°C");
}
}
ImGui::TextColored(ImVec4(0.180, 0.592, 0.796, 1.00f), "CPU");
ImGui::SameLine(hudFirstRow);
ImGui::Text("%d%%", cpuLoadLog);
// ImGui::SameLine(150);
// ImGui::Text("%s", "%");
if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_cpu_temp]){
ImGui::SameLine(hudSecondRow);
ImGui::Text("%i%s", cpuTemp, "°C");
}
if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_core_load]){
int i = 0;
for (const CPUData &cpuData : cpuStats.GetCPUData())
{
ImGui::TextColored(ImVec4(0.180, 0.592, 0.796, 1.00f), "CPU");
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(font1);
ImGui::TextColored(ImVec4(0.180, 0.592, 0.796, 1.00f),"%i", i);
ImGui::PopFont();
ImGui::SameLine(hudFirstRow);
ImGui::Text("%i%%", int(cpuData.percent));
ImGui::SameLine(hudSecondRow);
ImGui::Text("%i", cpuData.mhz);
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(font1);
ImGui::Text("MHz");
ImGui::PopFont();
i++;
}
}
if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_fps]){
ImGui::TextColored(ImVec4(0.925, 0.411, 0.411, 1.00f), "%s", engineName.c_str());
ImGui::SameLine(hudFirstRow);
ImGui::Text("%.0f", data->fps);
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(font1);
ImGui::Text("FPS");
ImGui::PopFont();
ImGui::SameLine(hudSecondRow);
ImGui::Text("%.1f", 1000 / data->fps);
ImGui::SameLine(0, 1.0f);
ImGui::PushFont(font1);
ImGui::Text("ms");
ImGui::PopFont();
if (engineName == "DXVK" || engineName == "VKD3D"){
ImGui::PushFont(font1);
ImGui::TextColored(ImVec4(0.925, 0.411, 0.411, 1.00f), "%s", engineVersion.c_str());
ImGui::PopFont();
}
}
// ImGui::ProgressBar(float(0.5), ImVec2(ImGui::GetContentRegionAvailWidth(), 21), NULL);
ImGui::Dummy(ImVec2(0.0f, 20.0f));
if (loggingOn && log_period == 0){
uint64_t now = os_time_get();
elapsedLog = (double)(now - log_start);
if ((elapsedLog) >= duration * 1000000)
loggingOn = false;
out << fps << "," << cpuLoadLog << "," << gpuLoadLog << "," << (now - log_start) << endl;
}
/* Recompute min/max */
for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
data->stats_min.stats[s] = UINT64_MAX;
data->stats_max.stats[s] = 0;
}
for (uint32_t f = 0; f < MIN2(data->n_frames, ARRAY_SIZE(data->frames_stats)); f++) {
for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
data->stats_min.stats[s] = MIN2(data->frames_stats[f].stats[s],
data->stats_min.stats[s]);
data->stats_max.stats[s] = MAX2(data->frames_stats[f].stats[s],
data->stats_max.stats[s]);
}
}
for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
assert(data->stats_min.stats[s] != UINT64_MAX);
}
for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
if (!instance_data->params.enabled[s] ||
s == OVERLAY_PARAM_ENABLED_fps ||
s == OVERLAY_PARAM_ENABLED_frame)
continue;
char hash[40];
snprintf(hash, sizeof(hash), "##%s", overlay_param_names[s]);
data->stat_selector = (enum overlay_param_enabled) s;
data->time_dividor = 1000.0f;
if (s == OVERLAY_PARAM_ENABLED_gpu_timing)
data->time_dividor = 1000000.0f;
ImGui::PushStyleColor(ImGuiCol_FrameBg, ImVec4(0.0f, 0.0f, 0.0f, 0.0f));
if (s == OVERLAY_PARAM_ENABLED_frame_timing) {
double min_time = 0.0f;
double max_time = 50.0f;
ImGui::PlotLines(hash, get_time_stat, data,
ARRAY_SIZE(data->frames_stats), 0,
NULL, min_time, max_time,
ImVec2(ImGui::GetContentRegionAvailWidth(), 50));
}
ImGui::PopStyleColor();
}
data->window_size = ImVec2(data->window_size.x, ImGui::GetCursorPosY() + 10.0f);
}
ImGui::End();
if(loggingOn){
ImGui::SetNextWindowBgAlpha(0.01);
ImGui::SetNextWindowSize(ImVec2(200, 100), ImGuiCond_Always);
ImGui::SetNextWindowPos(ImVec2(data->width - 200,
0),
ImGuiCond_Always);
ImGui::Begin("Logging", &open, ImGuiWindowFlags_NoDecoration);
ImGui::Text("Logging...");
ImGui::Text("Elapsed: %isec", int((elapsedLog) / 1000000));
ImGui::End();
}
ImGui::PopStyleVar(2);
ImGui::EndFrame();
ImGui::Render();
}
static uint32_t vk_memory_type(struct device_data *data,
VkMemoryPropertyFlags properties,
uint32_t type_bits)
{
VkPhysicalDeviceMemoryProperties prop;
data->instance->vtable.GetPhysicalDeviceMemoryProperties(data->physical_device, &prop);
for (uint32_t i = 0; i < prop.memoryTypeCount; i++)
if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1<<i))
return i;
return 0xFFFFFFFF; // Unable to find memoryType
}
static void ensure_swapchain_fonts(struct swapchain_data *data,
VkCommandBuffer command_buffer)
{
if (data->font_uploaded)
return;
data->font_uploaded = true;
struct device_data *device_data = data->device;
ImGuiIO& io = ImGui::GetIO();
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
size_t upload_size = width * height * 4 * sizeof(char);
/* Upload buffer */
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = upload_size;
buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK(device_data->vtable.CreateBuffer(device_data->device, &buffer_info,
NULL, &data->upload_font_buffer));
VkMemoryRequirements upload_buffer_req;
device_data->vtable.GetBufferMemoryRequirements(device_data->device,
data->upload_font_buffer,
&upload_buffer_req);
VkMemoryAllocateInfo upload_alloc_info = {};
upload_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
upload_alloc_info.allocationSize = upload_buffer_req.size;
upload_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
upload_buffer_req.memoryTypeBits);
VK_CHECK(device_data->vtable.AllocateMemory(device_data->device,
&upload_alloc_info,
NULL,
&data->upload_font_buffer_mem));
VK_CHECK(device_data->vtable.BindBufferMemory(device_data->device,
data->upload_font_buffer,
data->upload_font_buffer_mem, 0));
/* Upload to Buffer */
char* map = NULL;
VK_CHECK(device_data->vtable.MapMemory(device_data->device,
data->upload_font_buffer_mem,
0, upload_size, 0, (void**)(&map)));
memcpy(map, pixels, upload_size);
VkMappedMemoryRange range[1] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = data->upload_font_buffer_mem;
range[0].size = upload_size;
VK_CHECK(device_data->vtable.FlushMappedMemoryRanges(device_data->device, 1, range));
device_data->vtable.UnmapMemory(device_data->device,
data->upload_font_buffer_mem);
/* Copy buffer to image */
VkImageMemoryBarrier copy_barrier[1] = {};
copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
copy_barrier[0].image = data->font_image;
copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_barrier[0].subresourceRange.levelCount = 1;
copy_barrier[0].subresourceRange.layerCount = 1;
device_data->vtable.CmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_HOST_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL,
1, copy_barrier);
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = width;
region.imageExtent.height = height;
region.imageExtent.depth = 1;
device_data->vtable.CmdCopyBufferToImage(command_buffer,
data->upload_font_buffer,
data->font_image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &region);
VkImageMemoryBarrier use_barrier[1] = {};
use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
use_barrier[0].image = data->font_image;
use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
use_barrier[0].subresourceRange.levelCount = 1;
use_barrier[0].subresourceRange.layerCount = 1;
device_data->vtable.CmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, NULL,
0, NULL,
1, use_barrier);
/* Store our identifier */
io.Fonts->TexID = (ImTextureID)(intptr_t)data->font_image;
}
static void CreateOrResizeBuffer(struct device_data *data,
VkBuffer *buffer,
VkDeviceMemory *buffer_memory,
VkDeviceSize *buffer_size,
size_t new_size, VkBufferUsageFlagBits usage)
{
if (*buffer != VK_NULL_HANDLE)
data->vtable.DestroyBuffer(data->device, *buffer, NULL);
if (*buffer_memory)
data->vtable.FreeMemory(data->device, *buffer_memory, NULL);
VkBufferCreateInfo buffer_info = {};
buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_info.size = new_size;
buffer_info.usage = usage;
buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK(data->vtable.CreateBuffer(data->device, &buffer_info, NULL, buffer));
VkMemoryRequirements req;
data->vtable.GetBufferMemoryRequirements(data->device, *buffer, &req);
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = req.size;
alloc_info.memoryTypeIndex =
vk_memory_type(data, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
VK_CHECK(data->vtable.AllocateMemory(data->device, &alloc_info, NULL, buffer_memory));
VK_CHECK(data->vtable.BindBufferMemory(data->device, *buffer, *buffer_memory, 0));
*buffer_size = new_size;
}
static struct overlay_draw *render_swapchain_display(struct swapchain_data *data,
struct queue_data *present_queue,
const VkSemaphore *wait_semaphores,
unsigned n_wait_semaphores,
unsigned image_index)
{
ImDrawData* draw_data = ImGui::GetDrawData();
if (draw_data->TotalVtxCount == 0)
return NULL;
struct device_data *device_data = data->device;
struct overlay_draw *draw = get_overlay_draw(data);
device_data->vtable.ResetCommandBuffer(draw->command_buffer, 0);
VkRenderPassBeginInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
render_pass_info.renderPass = data->render_pass;
render_pass_info.framebuffer = data->framebuffers[image_index];
render_pass_info.renderArea.extent.width = data->width;
render_pass_info.renderArea.extent.height = data->height;
VkCommandBufferBeginInfo buffer_begin_info = {};
buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
device_data->vtable.BeginCommandBuffer(draw->command_buffer, &buffer_begin_info);
ensure_swapchain_fonts(data, draw->command_buffer);
/* Bounce the image to display back to color attachment layout for
* rendering on top of it.
*/
VkImageMemoryBarrier imb;
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = nullptr;
imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
imb.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
imb.image = data->images[image_index];
imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imb.subresourceRange.baseMipLevel = 0;
imb.subresourceRange.levelCount = 1;
imb.subresourceRange.baseArrayLayer = 0;
imb.subresourceRange.layerCount = 1;
imb.srcQueueFamilyIndex = present_queue->family_index;
imb.dstQueueFamilyIndex = device_data->graphic_queue->family_index;
device_data->vtable.CmdPipelineBarrier(draw->command_buffer,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
0, /* dependency flags */
0, nullptr, /* memory barriers */
0, nullptr, /* buffer memory barriers */
1, &imb); /* image memory barriers */
device_data->vtable.CmdBeginRenderPass(draw->command_buffer, &render_pass_info,
VK_SUBPASS_CONTENTS_INLINE);
/* Create/Resize vertex & index buffers */
size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert);
size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx);
if (draw->vertex_buffer_size < vertex_size) {
CreateOrResizeBuffer(device_data,
&draw->vertex_buffer,
&draw->vertex_buffer_mem,
&draw->vertex_buffer_size,
vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
}
if (draw->index_buffer_size < index_size) {
CreateOrResizeBuffer(device_data,
&draw->index_buffer,
&draw->index_buffer_mem,
&draw->index_buffer_size,
index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
}
/* Upload vertex & index data */
ImDrawVert* vtx_dst = NULL;
ImDrawIdx* idx_dst = NULL;
VK_CHECK(device_data->vtable.MapMemory(device_data->device, draw->vertex_buffer_mem,
0, vertex_size, 0, (void**)(&vtx_dst)));
VK_CHECK(device_data->vtable.MapMemory(device_data->device, draw->index_buffer_mem,
0, index_size, 0, (void**)(&idx_dst)));
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
vtx_dst += cmd_list->VtxBuffer.Size;
idx_dst += cmd_list->IdxBuffer.Size;
}
VkMappedMemoryRange range[2] = {};
range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[0].memory = draw->vertex_buffer_mem;
range[0].size = VK_WHOLE_SIZE;
range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range[1].memory = draw->index_buffer_mem;
range[1].size = VK_WHOLE_SIZE;
VK_CHECK(device_data->vtable.FlushMappedMemoryRanges(device_data->device, 2, range));
device_data->vtable.UnmapMemory(device_data->device, draw->vertex_buffer_mem);
device_data->vtable.UnmapMemory(device_data->device, draw->index_buffer_mem);
/* Bind pipeline and descriptor sets */
device_data->vtable.CmdBindPipeline(draw->command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, data->pipeline);
VkDescriptorSet desc_set[1] = { data->descriptor_set };
device_data->vtable.CmdBindDescriptorSets(draw->command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
data->pipeline_layout, 0, 1, desc_set, 0, NULL);
/* Bind vertex & index buffers */
VkBuffer vertex_buffers[1] = { draw->vertex_buffer };
VkDeviceSize vertex_offset[1] = { 0 };
device_data->vtable.CmdBindVertexBuffers(draw->command_buffer, 0, 1, vertex_buffers, vertex_offset);
device_data->vtable.CmdBindIndexBuffer(draw->command_buffer, draw->index_buffer, 0, VK_INDEX_TYPE_UINT16);
/* Setup viewport */
VkViewport viewport;
viewport.x = 0;
viewport.y = 0;
viewport.width = draw_data->DisplaySize.x;
viewport.height = draw_data->DisplaySize.y;
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
device_data->vtable.CmdSetViewport(draw->command_buffer, 0, 1, &viewport);
/* Setup scale and translation through push constants :
*
* Our visible imgui space lies from draw_data->DisplayPos (top left) to
* draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin
* is typically (0,0) for single viewport apps.
*/
float scale[2];
scale[0] = 2.0f / draw_data->DisplaySize.x;
scale[1] = 2.0f / draw_data->DisplaySize.y;
float translate[2];
translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0];
translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1];
device_data->vtable.CmdPushConstants(draw->command_buffer, data->pipeline_layout,
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(float) * 0, sizeof(float) * 2, scale);
device_data->vtable.CmdPushConstants(draw->command_buffer, data->pipeline_layout,
VK_SHADER_STAGE_VERTEX_BIT,
sizeof(float) * 2, sizeof(float) * 2, translate);
// Render the command lists:
int vtx_offset = 0;
int idx_offset = 0;
ImVec2 display_pos = draw_data->DisplayPos;
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
{
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
// Apply scissor/clipping rectangle
// FIXME: We could clamp width/height based on clamped min/max values.
VkRect2D scissor;
scissor.offset.x = (int32_t)(pcmd->ClipRect.x - display_pos.x) > 0 ? (int32_t)(pcmd->ClipRect.x - display_pos.x) : 0;
scissor.offset.y = (int32_t)(pcmd->ClipRect.y - display_pos.y) > 0 ? (int32_t)(pcmd->ClipRect.y - display_pos.y) : 0;
scissor.extent.width = (uint32_t)(pcmd->ClipRect.z - pcmd->ClipRect.x);
scissor.extent.height = (uint32_t)(pcmd->ClipRect.w - pcmd->ClipRect.y + 1); // FIXME: Why +1 here?
device_data->vtable.CmdSetScissor(draw->command_buffer, 0, 1, &scissor);
// Draw
device_data->vtable.CmdDrawIndexed(draw->command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0);
idx_offset += pcmd->ElemCount;
}
vtx_offset += cmd_list->VtxBuffer.Size;
}
device_data->vtable.CmdEndRenderPass(draw->command_buffer);
/* Bounce the image to display back to present layout. */
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = nullptr;
imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
imb.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
imb.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
imb.image = data->images[image_index];
imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imb.subresourceRange.baseMipLevel = 0;
imb.subresourceRange.levelCount = 1;
imb.subresourceRange.baseArrayLayer = 0;
imb.subresourceRange.layerCount = 1;
imb.srcQueueFamilyIndex = device_data->graphic_queue->family_index;
imb.dstQueueFamilyIndex = present_queue->family_index;
device_data->vtable.CmdPipelineBarrier(draw->command_buffer,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
0, /* dependency flags */
0, nullptr, /* memory barriers */
0, nullptr, /* buffer memory barriers */
1, &imb); /* image memory barriers */
device_data->vtable.EndCommandBuffer(draw->command_buffer);
VkSubmitInfo submit_info = {};
VkPipelineStageFlags stage_wait = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &draw->command_buffer;
submit_info.pWaitDstStageMask = &stage_wait;
submit_info.waitSemaphoreCount = n_wait_semaphores;
submit_info.pWaitSemaphores = wait_semaphores;
submit_info.signalSemaphoreCount = 1;
submit_info.pSignalSemaphores = &draw->semaphore;
device_data->vtable.QueueSubmit(device_data->graphic_queue->queue, 1, &submit_info, draw->fence);
return draw;
}
static const uint32_t overlay_vert_spv[] = {
#include "overlay.vert.spv.h"
};
static const uint32_t overlay_frag_spv[] = {
#include "overlay.frag.spv.h"
};
static void setup_swapchain_data_pipeline(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
VkShaderModule vert_module, frag_module;
/* Create shader modules */
VkShaderModuleCreateInfo vert_info = {};
vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
vert_info.codeSize = sizeof(overlay_vert_spv);
vert_info.pCode = overlay_vert_spv;
VK_CHECK(device_data->vtable.CreateShaderModule(device_data->device,
&vert_info, NULL, &vert_module));
VkShaderModuleCreateInfo frag_info = {};
frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
frag_info.codeSize = sizeof(overlay_frag_spv);
frag_info.pCode = (uint32_t*)overlay_frag_spv;
VK_CHECK(device_data->vtable.CreateShaderModule(device_data->device,
&frag_info, NULL, &frag_module));
/* Font sampler */
VkSamplerCreateInfo sampler_info = {};
sampler_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler_info.magFilter = VK_FILTER_LINEAR;
sampler_info.minFilter = VK_FILTER_LINEAR;
sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler_info.minLod = -1000;
sampler_info.maxLod = 1000;
sampler_info.maxAnisotropy = 1.0f;
VK_CHECK(device_data->vtable.CreateSampler(device_data->device, &sampler_info,
NULL, &data->font_sampler));
/* Descriptor pool */
VkDescriptorPoolSize sampler_pool_size = {};
sampler_pool_size.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
sampler_pool_size.descriptorCount = 1;
VkDescriptorPoolCreateInfo desc_pool_info = {};
desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
desc_pool_info.maxSets = 1;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &sampler_pool_size;
VK_CHECK(device_data->vtable.CreateDescriptorPool(device_data->device,
&desc_pool_info,
NULL, &data->descriptor_pool));
/* Descriptor layout */
VkSampler sampler[1] = { data->font_sampler };
VkDescriptorSetLayoutBinding binding[1] = {};
binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
binding[0].descriptorCount = 1;
binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
binding[0].pImmutableSamplers = sampler;
VkDescriptorSetLayoutCreateInfo set_layout_info = {};
set_layout_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
set_layout_info.bindingCount = 1;
set_layout_info.pBindings = binding;
VK_CHECK(device_data->vtable.CreateDescriptorSetLayout(device_data->device,
&set_layout_info,
NULL, &data->descriptor_layout));
/* Descriptor set */
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
alloc_info.descriptorPool = data->descriptor_pool;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &data->descriptor_layout;
VK_CHECK(device_data->vtable.AllocateDescriptorSets(device_data->device,
&alloc_info,
&data->descriptor_set));
/* Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full
* 3d projection matrix
*/
VkPushConstantRange push_constants[1] = {};
push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
push_constants[0].offset = sizeof(float) * 0;
push_constants[0].size = sizeof(float) * 4;
VkPipelineLayoutCreateInfo layout_info = {};
layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layout_info.setLayoutCount = 1;
layout_info.pSetLayouts = &data->descriptor_layout;
layout_info.pushConstantRangeCount = 1;
layout_info.pPushConstantRanges = push_constants;
VK_CHECK(device_data->vtable.CreatePipelineLayout(device_data->device,
&layout_info,
NULL, &data->pipeline_layout));
VkPipelineShaderStageCreateInfo stage[2] = {};
stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
stage[0].module = vert_module;
stage[0].pName = "main";
stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
stage[1].module = frag_module;
stage[1].pName = "main";
VkVertexInputBindingDescription binding_desc[1] = {};
binding_desc[0].stride = sizeof(ImDrawVert);
binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
VkVertexInputAttributeDescription attribute_desc[3] = {};
attribute_desc[0].location = 0;
attribute_desc[0].binding = binding_desc[0].binding;
attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos);
attribute_desc[1].location = 1;
attribute_desc[1].binding = binding_desc[0].binding;
attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT;
attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv);
attribute_desc[2].location = 2;
attribute_desc[2].binding = binding_desc[0].binding;
attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM;
attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col);
VkPipelineVertexInputStateCreateInfo vertex_info = {};
vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertex_info.vertexBindingDescriptionCount = 1;
vertex_info.pVertexBindingDescriptions = binding_desc;
vertex_info.vertexAttributeDescriptionCount = 3;
vertex_info.pVertexAttributeDescriptions = attribute_desc;
VkPipelineInputAssemblyStateCreateInfo ia_info = {};
ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkPipelineViewportStateCreateInfo viewport_info = {};
viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport_info.viewportCount = 1;
viewport_info.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo raster_info = {};
raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
raster_info.polygonMode = VK_POLYGON_MODE_FILL;
raster_info.cullMode = VK_CULL_MODE_NONE;
raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
raster_info.lineWidth = 1.0f;
VkPipelineMultisampleStateCreateInfo ms_info = {};
ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineColorBlendAttachmentState color_attachment[1] = {};
color_attachment[0].blendEnable = VK_TRUE;
color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD;
color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
VkPipelineDepthStencilStateCreateInfo depth_info = {};
depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
VkPipelineColorBlendStateCreateInfo blend_info = {};
blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blend_info.attachmentCount = 1;
blend_info.pAttachments = color_attachment;
VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamic_state = {};
dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states);
dynamic_state.pDynamicStates = dynamic_states;
VkGraphicsPipelineCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.flags = 0;
info.stageCount = 2;
info.pStages = stage;
info.pVertexInputState = &vertex_info;
info.pInputAssemblyState = &ia_info;
info.pViewportState = &viewport_info;
info.pRasterizationState = &raster_info;
info.pMultisampleState = &ms_info;
info.pDepthStencilState = &depth_info;
info.pColorBlendState = &blend_info;
info.pDynamicState = &dynamic_state;
info.layout = data->pipeline_layout;
info.renderPass = data->render_pass;
VK_CHECK(
device_data->vtable.CreateGraphicsPipelines(device_data->device, VK_NULL_HANDLE,
1, &info,
NULL, &data->pipeline));
device_data->vtable.DestroyShaderModule(device_data->device, vert_module, NULL);
device_data->vtable.DestroyShaderModule(device_data->device, frag_module, NULL);
ImGuiIO& io = ImGui::GetIO();
int font_size = device_data->instance->params.font_size;
if (!font_size)
font_size = 24;
const char* mangohud_font = getenv("MANGOHUD_FONT");
if(mangohud_font) {
font = io.Fonts->AddFontFromFileTTF(mangohud_font, font_size);
font1 = io.Fonts->AddFontFromFileTTF(mangohud_font, font_size * 0.55f);
} else {
ImFontConfig font_cfg = ImFontConfig();
const char* ttf_compressed_base85 = GetDefaultCompressedFontDataTTFBase85();
const ImWchar* glyph_ranges = io.Fonts->GetGlyphRangesDefault();
font = io.Fonts->AddFontFromMemoryCompressedBase85TTF(ttf_compressed_base85, font_size, &font_cfg, glyph_ranges);
font1 = io.Fonts->AddFontFromMemoryCompressedBase85TTF(ttf_compressed_base85, font_size * 0.55, &font_cfg, glyph_ranges);
}
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
/* Font image */
VkImageCreateInfo image_info = {};
image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_info.imageType = VK_IMAGE_TYPE_2D;
image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_info.extent.width = width;
image_info.extent.height = height;
image_info.extent.depth = 1;
image_info.mipLevels = 1;
image_info.arrayLayers = 1;
image_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK(device_data->vtable.CreateImage(device_data->device, &image_info,
NULL, &data->font_image));
VkMemoryRequirements font_image_req;
device_data->vtable.GetImageMemoryRequirements(device_data->device,
data->font_image, &font_image_req);
VkMemoryAllocateInfo image_alloc_info = {};
image_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
image_alloc_info.allocationSize = font_image_req.size;
image_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
font_image_req.memoryTypeBits);
VK_CHECK(device_data->vtable.AllocateMemory(device_data->device, &image_alloc_info,
NULL, &data->font_mem));
VK_CHECK(device_data->vtable.BindImageMemory(device_data->device,
data->font_image,
data->font_mem, 0));
/* Font image view */
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.image = data->font_image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = VK_FORMAT_R8G8B8A8_UNORM;
view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view_info.subresourceRange.levelCount = 1;
view_info.subresourceRange.layerCount = 1;
VK_CHECK(device_data->vtable.CreateImageView(device_data->device, &view_info,
NULL, &data->font_image_view));
/* Descriptor set */
VkDescriptorImageInfo desc_image[1] = {};
desc_image[0].sampler = data->font_sampler;
desc_image[0].imageView = data->font_image_view;
desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkWriteDescriptorSet write_desc[1] = {};
write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
write_desc[0].dstSet = data->descriptor_set;
write_desc[0].descriptorCount = 1;
write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
write_desc[0].pImageInfo = desc_image;
device_data->vtable.UpdateDescriptorSets(device_data->device, 1, write_desc, 0, NULL);
}
static void setup_swapchain_data(struct swapchain_data *data,
const VkSwapchainCreateInfoKHR *pCreateInfo)
{
data->width = pCreateInfo->imageExtent.width;
data->height = pCreateInfo->imageExtent.height;
data->format = pCreateInfo->imageFormat;
data->imgui_context = ImGui::CreateContext();
ImGui::SetCurrentContext(data->imgui_context);
ImGui::GetIO().IniFilename = NULL;
ImGui::GetIO().DisplaySize = ImVec2((float)data->width, (float)data->height);
ImGuiStyle& style = ImGui::GetStyle();
//style.Colors[ImGuiCol_FrameBg] = ImVec4(0.0f, 0.0f, 0.0f, 0.00f); // Setting temporarily with PushStyleColor()
style.Colors[ImGuiCol_PlotLines] = ImVec4(0.0f, 1.0f, 0.0f, 1.00f);
struct device_data *device_data = data->device;
/* Render pass */
VkAttachmentDescription attachment_desc = {};
attachment_desc.format = pCreateInfo->imageFormat;
attachment_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attachment_desc.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachment_desc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachment_desc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachment_desc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachment_desc.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachment_desc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference color_attachment = {};
color_attachment.attachment = 0;
color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_attachment;
VkSubpassDependency dependency = {};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.srcAccessMask = 0;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkRenderPassCreateInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
render_pass_info.attachmentCount = 1;
render_pass_info.pAttachments = &attachment_desc;
render_pass_info.subpassCount = 1;
render_pass_info.pSubpasses = &subpass;
render_pass_info.dependencyCount = 1;
render_pass_info.pDependencies = &dependency;
VK_CHECK(device_data->vtable.CreateRenderPass(device_data->device,
&render_pass_info,
NULL, &data->render_pass));
setup_swapchain_data_pipeline(data);
VK_CHECK(device_data->vtable.GetSwapchainImagesKHR(device_data->device,
data->swapchain,
&data->n_images,
NULL));
data->images = ralloc_array(data, VkImage, data->n_images);
data->image_views = ralloc_array(data, VkImageView, data->n_images);
data->framebuffers = ralloc_array(data, VkFramebuffer, data->n_images);
VK_CHECK(device_data->vtable.GetSwapchainImagesKHR(device_data->device,
data->swapchain,
&data->n_images,
data->images));
/* Image views */
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = pCreateInfo->imageFormat;
view_info.components.r = VK_COMPONENT_SWIZZLE_R;
view_info.components.g = VK_COMPONENT_SWIZZLE_G;
view_info.components.b = VK_COMPONENT_SWIZZLE_B;
view_info.components.a = VK_COMPONENT_SWIZZLE_A;
view_info.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
for (uint32_t i = 0; i < data->n_images; i++) {
view_info.image = data->images[i];
VK_CHECK(device_data->vtable.CreateImageView(device_data->device,
&view_info, NULL,
&data->image_views[i]));
}
/* Framebuffers */
VkImageView attachment[1];
VkFramebufferCreateInfo fb_info = {};
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.renderPass = data->render_pass;
fb_info.attachmentCount = 1;
fb_info.pAttachments = attachment;
fb_info.width = data->width;
fb_info.height = data->height;
fb_info.layers = 1;
for (uint32_t i = 0; i < data->n_images; i++) {
attachment[0] = data->image_views[i];
VK_CHECK(device_data->vtable.CreateFramebuffer(device_data->device, &fb_info,
NULL, &data->framebuffers[i]));
}
/* Command buffer pool */
VkCommandPoolCreateInfo cmd_buffer_pool_info = {};
cmd_buffer_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmd_buffer_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
cmd_buffer_pool_info.queueFamilyIndex = device_data->graphic_queue->family_index;
VK_CHECK(device_data->vtable.CreateCommandPool(device_data->device,
&cmd_buffer_pool_info,
NULL, &data->command_pool));
}
static void shutdown_swapchain_data(struct swapchain_data *data)
{
struct device_data *device_data = data->device;
list_for_each_entry_safe(struct overlay_draw, draw, &data->draws, link) {
device_data->vtable.DestroySemaphore(device_data->device, draw->semaphore, NULL);
device_data->vtable.DestroyFence(device_data->device, draw->fence, NULL);
device_data->vtable.DestroyBuffer(device_data->device, draw->vertex_buffer, NULL);
device_data->vtable.DestroyBuffer(device_data->device, draw->index_buffer, NULL);
device_data->vtable.FreeMemory(device_data->device, draw->vertex_buffer_mem, NULL);
device_data->vtable.FreeMemory(device_data->device, draw->index_buffer_mem, NULL);
}
for (uint32_t i = 0; i < data->n_images; i++) {
device_data->vtable.DestroyImageView(device_data->device, data->image_views[i], NULL);
device_data->vtable.DestroyFramebuffer(device_data->device, data->framebuffers[i], NULL);
}
device_data->vtable.DestroyRenderPass(device_data->device, data->render_pass, NULL);
device_data->vtable.DestroyCommandPool(device_data->device, data->command_pool, NULL);
device_data->vtable.DestroyPipeline(device_data->device, data->pipeline, NULL);
device_data->vtable.DestroyPipelineLayout(device_data->device, data->pipeline_layout, NULL);
device_data->vtable.DestroyDescriptorPool(device_data->device,
data->descriptor_pool, NULL);
device_data->vtable.DestroyDescriptorSetLayout(device_data->device,
data->descriptor_layout, NULL);
device_data->vtable.DestroySampler(device_data->device, data->font_sampler, NULL);
device_data->vtable.DestroyImageView(device_data->device, data->font_image_view, NULL);
device_data->vtable.DestroyImage(device_data->device, data->font_image, NULL);
device_data->vtable.FreeMemory(device_data->device, data->font_mem, NULL);
device_data->vtable.DestroyBuffer(device_data->device, data->upload_font_buffer, NULL);
device_data->vtable.FreeMemory(device_data->device, data->upload_font_buffer_mem, NULL);
ImGui::DestroyContext(data->imgui_context);
}
static struct overlay_draw *before_present(struct swapchain_data *swapchain_data,
struct queue_data *present_queue,
const VkSemaphore *wait_semaphores,
unsigned n_wait_semaphores,
unsigned imageIndex)
{
struct instance_data *instance_data = swapchain_data->device->instance;
struct overlay_draw *draw = NULL;
snapshot_swapchain_frame(swapchain_data);
if (!instance_data->params.no_display && swapchain_data->n_frames > 0) {
compute_swapchain_display(swapchain_data);
draw = render_swapchain_display(swapchain_data, present_queue,
wait_semaphores, n_wait_semaphores,
imageIndex);
}
return draw;
}
static VkResult overlay_CreateSwapchainKHR(
VkDevice device,
const VkSwapchainCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSwapchainKHR* pSwapchain)
{
struct device_data *device_data = FIND(struct device_data, device);
VkResult result = device_data->vtable.CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain);
if (result != VK_SUCCESS) return result;
struct swapchain_data *swapchain_data = new_swapchain_data(*pSwapchain, device_data);
setup_swapchain_data(swapchain_data, pCreateInfo);
return result;
}
static void overlay_DestroySwapchainKHR(
VkDevice device,
VkSwapchainKHR swapchain,
const VkAllocationCallbacks* pAllocator)
{
struct swapchain_data *swapchain_data =
FIND(struct swapchain_data, swapchain);
shutdown_swapchain_data(swapchain_data);
swapchain_data->device->vtable.DestroySwapchainKHR(device, swapchain, pAllocator);
destroy_swapchain_data(swapchain_data);
}
static VkResult overlay_QueuePresentKHR(
VkQueue queue,
const VkPresentInfoKHR* pPresentInfo)
{
struct queue_data *queue_data = FIND(struct queue_data, queue);
struct device_data *device_data = queue_data->device;
struct instance_data *instance_data = device_data->instance;
device_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_frame]++;
if (list_length(&queue_data->running_command_buffer) > 0) {
/* Before getting the query results, make sure the operations have
* completed.
*/
VK_CHECK(device_data->vtable.ResetFences(device_data->device,
1, &queue_data->queries_fence));
VK_CHECK(device_data->vtable.QueueSubmit(queue, 0, NULL, queue_data->queries_fence));
VK_CHECK(device_data->vtable.WaitForFences(device_data->device,
1, &queue_data->queries_fence,
VK_FALSE, UINT64_MAX));
/* Now get the results. */
list_for_each_entry_safe(struct command_buffer_data, cmd_buffer_data,
&queue_data->running_command_buffer, link) {
list_delinit(&cmd_buffer_data->link);
if (cmd_buffer_data->timestamp_query_pool) {
uint64_t gpu_timestamps[2] = { 0 };
VK_CHECK(device_data->vtable.GetQueryPoolResults(device_data->device,
cmd_buffer_data->timestamp_query_pool,
cmd_buffer_data->query_index * 2, 2,
2 * sizeof(uint64_t), gpu_timestamps, sizeof(uint64_t),
VK_QUERY_RESULT_WAIT_BIT | VK_QUERY_RESULT_64_BIT));
gpu_timestamps[0] &= queue_data->timestamp_mask;
gpu_timestamps[1] &= queue_data->timestamp_mask;
device_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_gpu_timing] +=
(gpu_timestamps[1] - gpu_timestamps[0]) *
device_data->properties.limits.timestampPeriod;
}
}
}
/* Otherwise we need to add our overlay drawing semaphore to the list of
* semaphores to wait on. If we don't do that the presented picture might
* be have incomplete overlay drawings.
*/
VkResult result = VK_SUCCESS;
if (instance_data->params.no_display) {
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) {
VkSwapchainKHR swapchain = pPresentInfo->pSwapchains[i];
struct swapchain_data *swapchain_data =
FIND(struct swapchain_data, swapchain);
before_present(swapchain_data,
queue_data,
pPresentInfo->pWaitSemaphores,
pPresentInfo->waitSemaphoreCount,
pPresentInfo->pImageIndices[i]);
VkPresentInfoKHR present_info = *pPresentInfo;
present_info.swapchainCount = 1;
present_info.pSwapchains = &swapchain;
uint64_t ts0 = os_time_get();
result = queue_data->device->vtable.QueuePresentKHR(queue, &present_info);
uint64_t ts1 = os_time_get();
swapchain_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_present_timing] += ts1 - ts0;
}
} else {
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) {
VkSwapchainKHR swapchain = pPresentInfo->pSwapchains[i];
struct swapchain_data *swapchain_data =
FIND(struct swapchain_data, swapchain);
VkPresentInfoKHR present_info = *pPresentInfo;
present_info.swapchainCount = 1;
present_info.pSwapchains = &swapchain;
uint32_t image_index = pPresentInfo->pImageIndices[i];
struct overlay_draw *draw = before_present(swapchain_data,
queue_data,
pPresentInfo->pWaitSemaphores,
pPresentInfo->waitSemaphoreCount,
image_index);
/* Because the submission of the overlay draw waits on the semaphores
* handed for present, we don't need to have this present operation
* wait on them as well, we can just wait on the overlay submission
* semaphore.
*/
present_info.pWaitSemaphores = &draw->semaphore;
present_info.waitSemaphoreCount = 1;
uint64_t ts0 = os_time_get();
VkResult chain_result = queue_data->device->vtable.QueuePresentKHR(queue, &present_info);
uint64_t ts1 = os_time_get();
swapchain_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_present_timing] += ts1 - ts0;
if (pPresentInfo->pResults)
pPresentInfo->pResults[i] = chain_result;
if (chain_result != VK_SUCCESS && result == VK_SUCCESS)
result = chain_result;
}
}
return result;
}
static VkResult overlay_BeginCommandBuffer(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
memset(&cmd_buffer_data->stats, 0, sizeof(cmd_buffer_data->stats));
/* We don't record any query in secondary command buffers, just make sure
* we have the right inheritance.
*/
if (cmd_buffer_data->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
VkCommandBufferBeginInfo *begin_info = (VkCommandBufferBeginInfo *)
clone_chain((const struct VkBaseInStructure *)pBeginInfo);
VkCommandBufferInheritanceInfo *parent_inhe_info = (VkCommandBufferInheritanceInfo *)
vk_find_struct(begin_info, COMMAND_BUFFER_INHERITANCE_INFO);
VkCommandBufferInheritanceInfo inhe_info = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO,
NULL,
VK_NULL_HANDLE,
0,
VK_NULL_HANDLE,
VK_FALSE,
0,
overlay_query_flags,
};
if (parent_inhe_info)
parent_inhe_info->pipelineStatistics = overlay_query_flags;
else {
inhe_info.pNext = begin_info->pNext;
begin_info->pNext = &inhe_info;
}
VkResult result = device_data->vtable.BeginCommandBuffer(commandBuffer, pBeginInfo);
if (!parent_inhe_info)
begin_info->pNext = inhe_info.pNext;
free_chain((struct VkBaseOutStructure *)begin_info);
return result;
}
/* Otherwise record a begin query as first command. */
VkResult result = device_data->vtable.BeginCommandBuffer(commandBuffer, pBeginInfo);
if (result == VK_SUCCESS) {
if (cmd_buffer_data->timestamp_query_pool) {
device_data->vtable.CmdResetQueryPool(commandBuffer,
cmd_buffer_data->timestamp_query_pool,
cmd_buffer_data->query_index * 2, 2);
device_data->vtable.CmdWriteTimestamp(commandBuffer,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
cmd_buffer_data->timestamp_query_pool,
cmd_buffer_data->query_index * 2);
}
}
return result;
}
static VkResult overlay_EndCommandBuffer(
VkCommandBuffer commandBuffer)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
if (cmd_buffer_data->timestamp_query_pool) {
device_data->vtable.CmdWriteTimestamp(commandBuffer,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
cmd_buffer_data->timestamp_query_pool,
cmd_buffer_data->query_index * 2 + 1);
}
return device_data->vtable.EndCommandBuffer(commandBuffer);
}
static VkResult overlay_ResetCommandBuffer(
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
memset(&cmd_buffer_data->stats, 0, sizeof(cmd_buffer_data->stats));
return device_data->vtable.ResetCommandBuffer(commandBuffer, flags);
}
static void overlay_CmdExecuteCommands(
VkCommandBuffer commandBuffer,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers)
{
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, commandBuffer);
struct device_data *device_data = cmd_buffer_data->device;
/* Add the stats of the executed command buffers to the primary one. */
for (uint32_t c = 0; c < commandBufferCount; c++) {
struct command_buffer_data *sec_cmd_buffer_data =
FIND(struct command_buffer_data, pCommandBuffers[c]);
for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++)
cmd_buffer_data->stats.stats[s] += sec_cmd_buffer_data->stats.stats[s];
}
device_data->vtable.CmdExecuteCommands(commandBuffer, commandBufferCount, pCommandBuffers);
}
static VkResult overlay_AllocateCommandBuffers(
VkDevice device,
const VkCommandBufferAllocateInfo* pAllocateInfo,
VkCommandBuffer* pCommandBuffers)
{
struct device_data *device_data = FIND(struct device_data, device);
VkResult result =
device_data->vtable.AllocateCommandBuffers(device, pAllocateInfo, pCommandBuffers);
if (result != VK_SUCCESS)
return result;
VkQueryPool timestamp_query_pool = VK_NULL_HANDLE;
if (device_data->instance->params.enabled[OVERLAY_PARAM_ENABLED_gpu_timing]) {
VkQueryPoolCreateInfo pool_info = {
VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
NULL,
0,
VK_QUERY_TYPE_TIMESTAMP,
pAllocateInfo->commandBufferCount * 2,
0,
};
VK_CHECK(device_data->vtable.CreateQueryPool(device_data->device, &pool_info,
NULL, &timestamp_query_pool));
}
for (uint32_t i = 0; i < pAllocateInfo->commandBufferCount; i++) {
new_command_buffer_data(pCommandBuffers[i], pAllocateInfo->level,
timestamp_query_pool,
i, device_data);
}
if (timestamp_query_pool)
map_object(HKEY(timestamp_query_pool), (void *)(uintptr_t) pAllocateInfo->commandBufferCount);
return result;
}
static void overlay_FreeCommandBuffers(
VkDevice device,
VkCommandPool commandPool,
uint32_t commandBufferCount,
const VkCommandBuffer* pCommandBuffers)
{
struct device_data *device_data = FIND(struct device_data, device);
for (uint32_t i = 0; i < commandBufferCount; i++) {
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, pCommandBuffers[i]);
/* It is legal to free a NULL command buffer*/
if (!cmd_buffer_data)
continue;
uint64_t count = (uintptr_t)find_object_data(HKEY(cmd_buffer_data->timestamp_query_pool));
if (count == 1) {
unmap_object(HKEY(cmd_buffer_data->timestamp_query_pool));
device_data->vtable.DestroyQueryPool(device_data->device,
cmd_buffer_data->timestamp_query_pool, NULL);
} else if (count != 0) {
map_object(HKEY(cmd_buffer_data->timestamp_query_pool), (void *)(uintptr_t)(count - 1));
}
destroy_command_buffer_data(cmd_buffer_data);
}
device_data->vtable.FreeCommandBuffers(device, commandPool,
commandBufferCount, pCommandBuffers);
}
static VkResult overlay_QueueSubmit(
VkQueue queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence fence)
{
struct queue_data *queue_data = FIND(struct queue_data, queue);
struct device_data *device_data = queue_data->device;
for (uint32_t s = 0; s < submitCount; s++) {
for (uint32_t c = 0; c < pSubmits[s].commandBufferCount; c++) {
struct command_buffer_data *cmd_buffer_data =
FIND(struct command_buffer_data, pSubmits[s].pCommandBuffers[c]);
/* Merge the submitted command buffer stats into the device. */
for (uint32_t st = 0; st < OVERLAY_PARAM_ENABLED_MAX; st++)
device_data->frame_stats.stats[st] += cmd_buffer_data->stats.stats[st];
/* Attach the command buffer to the queue so we remember to read its
* pipeline statistics & timestamps at QueuePresent().
*/
if (!cmd_buffer_data->timestamp_query_pool)
continue;
if (list_is_empty(&cmd_buffer_data->link)) {
list_addtail(&cmd_buffer_data->link,
&queue_data->running_command_buffer);
} else {
fprintf(stderr, "Command buffer submitted multiple times before present.\n"
"This could lead to invalid data.\n");
}
}
}
return device_data->vtable.QueueSubmit(queue, submitCount, pSubmits, fence);
}
static VkResult overlay_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
struct instance_data *instance_data =
FIND(struct instance_data, physicalDevice);
VkLayerDeviceCreateInfo *chain_info =
get_device_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(NULL, "vkCreateDevice");
if (fpCreateDevice == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkPhysicalDeviceFeatures device_features = {};
VkDeviceCreateInfo device_info = *pCreateInfo;
if (pCreateInfo->pEnabledFeatures)
device_features = *(pCreateInfo->pEnabledFeatures);
if (instance_data->pipeline_statistics_enabled) {
device_features.inheritedQueries = true;
device_features.pipelineStatisticsQuery = true;
}
device_info.pEnabledFeatures = &device_features;
VkResult result = fpCreateDevice(physicalDevice, &device_info, pAllocator, pDevice);
if (result != VK_SUCCESS) return result;
struct device_data *device_data = new_device_data(*pDevice, instance_data);
device_data->physical_device = physicalDevice;
vk_load_device_commands(*pDevice, fpGetDeviceProcAddr, &device_data->vtable);
instance_data->vtable.GetPhysicalDeviceProperties(device_data->physical_device,
&device_data->properties);
VkLayerDeviceCreateInfo *load_data_info =
get_device_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
device_data->set_device_loader_data = load_data_info->u.pfnSetDeviceLoaderData;
device_map_queues(device_data, pCreateInfo);
return result;
}
static void overlay_DestroyDevice(
VkDevice device,
const VkAllocationCallbacks* pAllocator)
{
struct device_data *device_data = FIND(struct device_data, device);
device_unmap_queues(device_data);
device_data->vtable.DestroyDevice(device, pAllocator);
destroy_device_data(device_data);
}
static VkResult overlay_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
VkLayerInstanceCreateInfo *chain_info =
get_instance_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
const char* pEngineName = pCreateInfo->pApplicationInfo->pEngineName;
if (pEngineName)
engineName = pEngineName;
if (engineName == "DXVK" || engineName == "vkd3d") {
int engineVer = pCreateInfo->pApplicationInfo->engineVersion;
engineVersion = to_string(VK_VERSION_MAJOR(engineVer)) + "." + to_string(VK_VERSION_MINOR(engineVer)) + "." + to_string(VK_VERSION_PATCH(engineVer));
}
if (engineName != "DXVK" && engineName != "vkd3d" && engineName != "Feral3D")
engineName = "VULKAN";
if (engineName == "vkd3d")
engineName = "VKD3D";
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr =
chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkCreateInstance fpCreateInstance =
(PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance");
if (fpCreateInstance == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
if (result != VK_SUCCESS) return result;
struct instance_data *instance_data = new_instance_data(*pInstance);
vk_load_instance_commands(instance_data->instance,
fpGetInstanceProcAddr,
&instance_data->vtable);
instance_data_map_physical_devices(instance_data, true);
parse_overlay_env(&instance_data->params, getenv("MANGOHUD_CONFIG"));
int font_size;
instance_data->params.font_size > 0 ? font_size = instance_data->params.font_size : font_size = 24;
hudSpacing = font_size / 2;
hudFirstRow = font_size * 5;
hudSecondRow = font_size * 8;
/* If there's no control file, and an output_file was specified, start
* capturing fps data right away.
*/
instance_data->capture_enabled =
instance_data->params.output_file && instance_data->params.control < 0;
instance_data->capture_started = instance_data->capture_enabled;
return result;
}
static void overlay_DestroyInstance(
VkInstance instance,
const VkAllocationCallbacks* pAllocator)
{
struct instance_data *instance_data = FIND(struct instance_data, instance);
instance_data_map_physical_devices(instance_data, false);
instance_data->vtable.DestroyInstance(instance, pAllocator);
destroy_instance_data(instance_data);
}
static const struct {
const char *name;
void *ptr;
} name_to_funcptr_map[] = {
{ "vkGetDeviceProcAddr", (void *) vkGetDeviceProcAddr },
#define ADD_HOOK(fn) { "vk" # fn, (void *) overlay_ ## fn }
#define ADD_ALIAS_HOOK(alias, fn) { "vk" # alias, (void *) overlay_ ## fn }
ADD_HOOK(AllocateCommandBuffers),
ADD_HOOK(FreeCommandBuffers),
ADD_HOOK(ResetCommandBuffer),
ADD_HOOK(BeginCommandBuffer),
ADD_HOOK(EndCommandBuffer),
ADD_HOOK(CmdExecuteCommands),
ADD_HOOK(CreateSwapchainKHR),
ADD_HOOK(QueuePresentKHR),
ADD_HOOK(DestroySwapchainKHR),
ADD_HOOK(QueueSubmit),
ADD_HOOK(CreateDevice),
ADD_HOOK(DestroyDevice),
ADD_HOOK(CreateInstance),
ADD_HOOK(DestroyInstance),
#undef ADD_HOOK
};
static void *find_ptr(const char *name)
{
for (uint32_t i = 0; i < ARRAY_SIZE(name_to_funcptr_map); i++) {
if (strcmp(name, name_to_funcptr_map[i].name) == 0)
return name_to_funcptr_map[i].ptr;
}
return NULL;
}
VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice dev,
const char *funcName)
{
void *ptr = find_ptr(funcName);
if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
if (dev == NULL) return NULL;
struct device_data *device_data = FIND(struct device_data, dev);
if (device_data->vtable.GetDeviceProcAddr == NULL) return NULL;
return device_data->vtable.GetDeviceProcAddr(dev, funcName);
}
VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance,
const char *funcName)
{
void *ptr = find_ptr(funcName);
if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
if (instance == NULL) return NULL;
struct instance_data *instance_data = FIND(struct instance_data, instance);
if (instance_data->vtable.GetInstanceProcAddr == NULL) return NULL;
return instance_data->vtable.GetInstanceProcAddr(instance, funcName);
}